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A simulation of the mutual orbital motion of a point and a stick of equal masses in three dimen-
sions, described as the 3D /.-body problem, is presented herein. This simulation uses forces and
torques arrived at by exact integration over the length of the stick to produce equations of motion
which describe both the orbits of the point and the stick as well as the independent revolution of the
stick. Angular momentum and total energy are calculated for the simulation and their conservation
is used as a check to insure that the system produces physically plausible results. Several simple
cases of the system were tested to make sure they act as expected. More complex simulations were
tested to examine facets of of the 3D /.-body problem such as the transfer of angular momentum be-
tween the orbital and rotational motion. Simulations were also created to examine how the different
initial spin velocities, ωφ and ωθ, interact to affect the evolution of the system.

I. INTRODUCTION

Problems in orbital mechanics have been popular for
a long time. The most simplistic version of this is the 2-
body problem, wherein the orbit of two spheres in space is
examined. The solution to the 2-body problem has been
precisely known for hundreds of years. More complex ver-
sions of this problem are the 3-body and n-body problem,
which have three or more spheres in space. Through long
and extensive study these problems have been found to
be infinitely complex, and as such can only be exactly
solved in certain special cases.

More recently Frank King [1] has done work on a prob-
lem which is an intermediate between the 2-body and 3-
body problems. He studied the orbits of a point mass
and a line segment mass confined to a two dimensional
plane, a situation he refers to as the /.-body problem.
The forces and torques involved in this problem were
precisely integrable, which made it possible to find ex-
act solutions for all different versions of this system.

The problem discussed in this paper is an extension
of King’s work in the form of the /.-body problem in
three dimensions. In order to study this problem I used
Mathematica to set up a computer simulation which will
solve the equations of motion for different systems defined
by different initial positions and velocities, for a certain
amount of time into the future. In order to insure that
the simulation gives physically plausible results the to-
tal energy and angular momentum of the system will be
calculated to see if they are conserved. Using this sim-
ulation I have examined a number of facets of this type
of system. One specific point of interest was whether an-
gular momentum can be transferred between the orbital
motion of the system, and the rotational motion of the
stick.

Space programs are no longer solely focused on the
largest bodies in the system, which are all spherical.
They are also looking at asteroids and smaller moons
which are distinctly non-sphereical. One example of this
was in early 2001 when NASA had the NEAR spacecraft
orbit and eventually land on the asteroid Eros, which
has a somewhat linear shape. Thus despite seeming like

a very abstract sort of problem, this research is a step on
the way to applicable knowledge.

II. THEORY

In order to simulate the mutual orbital motion of a
point and a stick we calculated the force between the
two objects and the torque on the stick. However we
first needed to set up our system in a logical manner as
is seen in Fig. 1. We defined the stick to have a length
of 2R and a linear density of λ = ms/2R, where ms is
the mass of the stick which is equal to mp the mass of
the point. We also defined the stick to have a moment
of inertia Icm = msR

2/3. Our system sits in an inertial
reference frame with the point located by the vector ~rp
and the center of the stick located by the vector ~rs in the

FIG. 1: This is the schematic layout of my system showing the
point, the line, and all of the relevant vectors for calculating
the forces and torques of the system.



2

form

~rp =

 xp
yp
zp

 , ~rs =

 xs
ys
zs

 , (1)

both of which originate at the inertial origin. In order
to define the direction that the stick is pointing we are
using the Eulerian angles φ and θ in the body frame
of the stick [2] instead of polar spherical angles. The
Eulerian angle φ is the angle that the inertial reference
frame is rotated about the z-axis, and the Eulerian angle
θ is the angle the reference frame is rotated about the
new x-axis. At the end of the rotations the stick will lie
exactly along the z-axis of the new body reference frame.
Using rotation matrices [2] we moved these angles into
the inertial reference frame so we could define a vector
along the stick from its center to a mass element dm as

~r = r

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

  1 0 0
0 cos θ − sin θ
0 sin θ cos θ

  0
0
1


=

 r sin θ sinφ
−r sin θ cosφ

r cos θ

 ,

(2)

where r is the distance to the mass element dm. Next we
set up a vector connecting the origin to the mass element
dm by

~rdm = ~rs + ~r =

 xs + r sin θ sinφ
ys − r sin θ cosφ
zs + r cos θ

 , (3)

and use this to calculate the vector from the point to dm
as follows

∆~r = ~rp − ~rdm =

 xp − xs − r sin θ sinφ
yp − ys + r sin θ cosφ
zp − zs − r cos θ

 . (4)

Using these vectors we will also calculate ∆r =
√

∆~r2

and ∆r̂ = ∆~r
∆r .

Now that our system is fully described we calculate
the forces and torques. The force on the stick due to the
point is calculated by the integral

~Fs =
∫ R

−R

Gmpλ

∆r2
∆r̂dr, (5)

which is analogous to the calculation performed by King
[1] for the two dimensional version of the same problem.
Newton’s third law tells us that the force on the point
due to the stick, ~Fp, is equal and opposite to the force
~Fs calculated above. The torque on the stick is also cal-
culated analogously to King with the integral

~τs =
∫ R

−R

Gmpλ

∆r2
~r ×∆r̂dr. (6)

Both the force and the torque were integrated exactly
using Mathematica to have explicitly real values in vector
form. However as these results are highly complicated
they will not be included here.

The next step in simulating the orbital motion of the
point stick system is calculating the equations of motion
for our two bodies. First we calculate the translational
motion of the stick. To do this we use Newton’s sec-
ond law, ~F = m~a, and calculate each component of the
motion separately as follows:

~Fs(x, t) = ms
d2xs
dt2

,

~Fs(y, t) = ms
d2ys
dt2

,

~Fs(z, t) = ms
d2zs
dt2

.

(7)

Similarly, the translational equations of motion for the
point are:

−~Fs(x, t) = mp
d2xp
dt2

,

−~Fs(y, t) = mp
d2yp
dt2

,

−~Fs(z, t) = mp
d2zp
dt2

.

(8)

To calculate the rotational equations of motion for the
stick we move from the inertial reference frame into the
body frame of the stick, wherein the stick always lies
along the 3-axis. To translate the torque ~τs from the
inertial frame into a body frame torque ~τsb we multiply
~τs by rotation matrices [2], made valid by the fact that
we are using Eulerian angles, as follows:

~τsb =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

  cosφ sinφ 0
− sinφ cosφ 0

0 0 1

~τs. (9)

In the body frame we know that [2]

~τsb =
d~L

dt
+ ~ω × ~L (10)

where ~L is the angular momentum of the stick and ~ω is
the angular velocity of the stick. Since we are in the body
frame we also know that Li = Iiωi, and by inserting this
into Eq. 10 we can determine the three components of
the torque to be [2]

~τ1 = I1ω̇1 − (I2 − I3)ω2ω3,

~τ2 = I2ω̇2 − (I3 − I1)ω3ω1,

~τ3 = I3ω̇3 − (I1 − I2)ω1ω2.

(11)

However, the stick is fixed as the 3-axis in the body frame
so we know that the components of the moment of inertia
are Icm = I1 = I2 and I3 = 0, and the components
of the angular velocity are: ω1 = θ̇, ω2 = φ̇ sin θ, and
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ω3 = φ̇ cos θ. Using these values we get the following
simplification of Eq. 11

~τ1 = Iθ̈ − Iφ̇2 sin θ cos θ,

~τ2 = Iφ̈ sin θ + 2Iφ̇θ̇ cos θ,
~τ3 = 0.

(12)

Thus the equations of motion for the whole system are
described in Eq. 7, Eq. 8 and Eq. 12. To desig-
nate a specific system we then set initial conditions for:
the positions of the stick, (xs, ys, zs), the orientation of
the stick, (φ, θ), the translational velocities of the stick,
(vxs, vys, vzs), and the rotational velocities of the stick,
(ωφ, ωθ). The initial conditions of the point are deter-
mined by fixing the center of mass of the system. Once
we have these equations we apply Mathematica’s ND-
Solve command to the equations and the initial condi-
tions, and from this Mathematica numerically integrates
to completely describe the evolution of the system for a
set period of time.

To check if our simulation was producing physically
plausible results we also calculated the total energy of
the system and the total angular momentum to be sure
that both of these quantities are conserved. In order to
calculate the total energy of the system we began with
the standard formula for gravitational potential energy,

U = −GMm

r
. (13)

For our purposes we modified this formula to account for
the extended mass of the stick to obtain,

U =
∫ R

−R

Gmpλ

∆r
dr. (14)

Next we calculated the kinetic energy T modifying the
standard T = 1

2mv
2 for translational motion and the

standard T = 1
2Iω

2 for rotational motion to fit the sys-
tem as follows;

T =
1
2
mpv

2
p +

1
2
msv

2
s +

1
2
I1ω

2
1 +

1
2
I2ω

2
2 . (15)

Thus the total energy of the system is the sum of Eq. 14
and Eq. 15. The angular momentum of our system will
be the sum of the angular momentum of the point and
stick orbiting each other, ~Lo, and the angular momen-
tum from the rotation of the stick, ~Lr. ~Lo was simply
calculated from the standard formula ~L = m~r × ~v to be,

~Lo = mp~rp × ~vp +ms~rs × ~vs. (16)

In order to calculate ~Lr, we used rotation matrices to
get the angular velocities from the body frame into the
inertial reference frame and then multiplied them by the
moment of inertia to get,

~Lr = I

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

  1 0 0
0 cos θ − sin θ
0 sin θ cos θ

  ω1

ω2

0

 .

(17)

TABLE I: The set of initial conditions for all of the simula-
tions are listed below. Note that distances here are in multi-
ples of the stick length, 2R.

Inits A B C D1 D2 D3 D4 E

xs 0 0 0 0 0 0 0 0

ys
−3
4

−3
4

−3
4

−3
4

−3
4

−3
4

−3
4

−1
2

zs 0 0 0 0 0 0 0 1
2

φ π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

θ π π
2

π
2

π
2

π
2

π
2

π
2

π
2

vxs
−
√

2
2

−
√

2
2

−
√

2
2

−
√

2
2

−
√

2
2

−
√

2
2

−
√

2
2

−
√

2
2

vys 0 0 0 0 0 0 0 0

vzs 0 0 0 0 0 0 0 0

ωφ 0 0 0
√

2
2

−
√

2
2

−
√

2
2

√
2

2
0

ωθ 0 0
√

2
2

√
2

2
−
√

2
2

√
2

2
−
√

2
2

√
2

The angular momentum and total energy of the system
are both graphed against time for each set of initial con-
ditions examined to ensure that these quantities are con-
served. It is important to remember that the three com-
ponents of the angular momentum are conserved sepa-
rately at different values.

III. RESULTS & ANALYSIS

To begin analyzing the validity of our simulation of the
3D /.-body problem in three dimensions, we first look at
a simulation of simplest possible system that can be de-
scribed. This system, Sim. A, has the point and the stick
both in the xy-plane with the stick in a completely ver-
tical orientation. The initial conditions which describe
this system, and every other system discussed in this pa-
per can be found in Table I. This system should behave
like two point masses orbiting each other in a plane be-
cause the center of mass of the stick lies on the plane,
and the stick has no initial spin. When we check this
simulation we see that the total energy varies only on
the order of ten parts per trillion, and the three compo-
nents of the angular momentum also vary on the order
of ten parts per trillion. Variations this small are almost
certainly the results of slight errors in the numerical in-
tegration, and as such these quantities can be considered
to be conserved. Since all of the subsequent simulations
have variations in total energy and angular momentum
on approximately the same order we know that all of
these simulations are at least physically plausible. The
strobed representation of Sim. A in Fig. 2 shows us that
this system imitates the orbits of point masses in a plane
very nicely. This strobed image, as well as all of the sub-
sequent ones show the passage of time as changing color,
from blue at the beginning to red at the end. Addition-
ally there is an equal interval of time between each pair
of adjacent points and sticks. First we see that both the
point and the stick stay perfectly in the xy-plane for the
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FIG. 2: A strobed representation of Sim. A, shown with a
translucent xy-plane. In this figure adjacent points and ad-
jacent sticks are separated by equal amounts of time. Addi-
tionally, the passage of time is represented by changing colors
starting from blues at the beginning to reds at the end, thus a
point and stick of the same color represent the same moment
in time.

duration of the single orbit shown here. Next we can see
that the point and the line appear to be obeying the first
and second of Kepler’s Laws of Planetary Motion. In Fig.
2 both objects are clearly moving in ellipses, and further-
more the point and the stick move faster when they are
near to each other, and slower when they are far apart.

The next test case for our simulation is to mimic the
planar case of the system as examined by King [1]. This
simulation, Sim. B, will begin with the point and the
stick on the xy-plane, this time with the stick in a hori-
zontal orientation. We can see from the strobed picture
of Sim. B in Fig. 3 that both the point and the stick stay
exactly on the xy-plane, and additionally this system also
seems to obey Kepler’s Laws. Since this system had no
initial rotational velocity, it is interesting to note that
orbiting the point induces the stick to spin. This is due
to what A.J. Maciejewski refers to as “mutual coupling
between orbital and rotational motion” [3]. In essence
this means that it is possible for angular momentum to
be transferred from the orbital motion of the system to
the rotational motion of the stick and vice versa.

Our next simulation, Sim. C, will be attempting to
achieve a visible case of angular momentum being trans-
ferred from the rotational motion of the stick to the or-

FIG. 3: A strobed representation of Sim. B, shown with a
translucent xy-plane. This is a simulation of the planar case
of the /.-body problem.

bital motion of the system. To do this the initial set up
will be very similar to Sim. B, however the stick will
start with an initial rotational velocity about the imagi-
nary line connecting the point and the center of the stick.
The strobed picture in Fig. 4 of Sim. C shows the point
moving slightly above the xy-plane on one side of its or-
bit, and slightly below on the other side of the orbit. This
oscillation of the point about the xy-plane is due to a
transfer of momentum from rotational to orbital motion,
as the spinning stick pulls the point above and below the
plane. The center of mass of the stick also moves out of
the plane as a result of this, however this is much harder
to observe. This effect seems to be slightly changing the
orbital plane of the system.

The next thing I examined is how the two different
types of initial spin velocity of the stick interact with each
other. The two initial spin velocities of stick are ωφ which
is the spin about the z-axis and ωθ which is the spin about
the planar axis perpendicular to the initial φ direction.
To do this I have set up four related simulations, Sim.
D1-D4, with all parameters the same except for the initial
spin velocities, all which last for exactly the same amount
of time. In all four simulations the magnitude of both
ωφ and ωθ is equal to

√
2/2, the differences between the

simulations is the directions of the spins. Thus Sim. D1
has both ωφ and ωθ positive, while Sim. D2 has both
spins negative. Sim. D3 has only ωφ as a positive spin,
and Sim. D4 has only ωθ as a positive spin. We can
see in Fig. 5 that these conditions produce very different
patterns of motion. In these figures we can see a number
of different examples of the coupling between orbital and
rotational motion. In Sim. D1 we see that the points dip
below the plane on the close side of the orbit, whereas in
Sim. D4 the points rise above the plane on the close side
of the orbit. Thus it appears the direction of ωθ controls
where the point goes above and below the plane. However
the more interesting observation about this is that in Sim.
D2 and Sim. D3 the point stays almost perfectly in the
plane. Thus it would appear that an initial ωφ in the
same direction as the orbital direction, as in Sim. D2 and
Sim. D3, will prevent the point from oscillating about the
xy-plane during its orbit. Conversely, an initial ωφ in the
opposite direction from the orbital direction, as in Sim.
D1 and Sim. D4, will amplify, or at least not prevent, the

FIG. 4: A strobed representation of Sim. C, shown with a
translucent xy-plane. This simulation shows that rotational
motion of the stick can cause the point to move above and
below the plane.
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point’s oscillations. Another facet of these simulations to
note is that while they all last the same amount of time,
they do not all terminate at the same point in their orbit.
The simulations Sim. D2 and Sim. D3 conclude almost
exactly one complete orbit in the given amount of time,
whereas Sim. D1 and Sim. D4 terminate noticeably short
of completing their first orbits. Thus it seems that an
initial ωφ in the same direction as the orbital motion will
also cause the point and the stick to orbit about each
other slightly faster, whereas an initial ωφ in the opposite
direction from the orbital motion will cause the orbits to
be slightly slower. Since Sim. D2 and Sim. D3 complete
nearly identical amounts of their orbits, and Sim. D1 and
Sim. D4 also terminate in nearly identical places in their
orbits, it would appear that the initial ωθ direction has
no effect on the speed of the orbit. Finally, we also see
how the different initial spins cause the spiral patterns of
the stick during the orbit to occur very differently.

All of the previous simulations have primarily confined
the point and the stick to the near vicinity of the xy-

FIG. 5: Above, from top to bottom, are strobed represen-
tations of Sim. D1(+,+), Sim. D2(-,-), Sim. D3(-,+), Sim.
D4(+,-). These four simulations show effects of the directions
of the initial spin velocities ωφ and ωθ on the evolution of the
system.

FIG. 6: A strobed representation of Sim. E, which is not
initially confined to the plane. Note that the orbital motion
appears similar to previous simulations with a different orbital
plane.

plane, in order to make effects such as the oscillation of
the point due to the rotation of the stick easier to study.
Our last simulation, Sim. E, is mostly to show what can
happen to the system when the point and the line are
not initially confined to the plane. In Fig. 6 we can see
that Sim. E looks very similar to some of the previous
simulations, except for the fact that the point and the
stick are moving in an orbital plane which is significantly
tilted with respect to the xy-plane.

IV. CONCLUSIONS & FUTURE WORK

The first thing to ask is whether this simulation pro-
gram really is a legitimate representation of the physical
world. The fact that total energy and angular momen-
tum are conserved, as well as how nicely our test cases
conformed to expectations would seem to indicate that
it physically reasonable, at least in the cases tested here.
There are a few problem areas, most notably the fact that
if the point and the stick ever come into contact the simu-
lation gives them seemingly random trajectories. Thus it
might be interesting to extend this simulation to include
the physics of collisions. Another issue is that program
refuses to integrate the equations of motion if the stick
is initially set to be vertical by θ = 0 instead of θ = π.
One final issue is that if the line traced by the initial ori-
entation of the stick goes through the point, the system
will either not integrate or produce a result in which the
total system energy is not conserved.

From our simulations we were able to observe several
facets of the 3D /.-body problem. It appears that an-
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gular momentum can be transferred between the orbital
motion of the system and the rotational motion of the
stick in a number of complex ways. Examples of this
transfer of angular momentum include the stick acquir-
ing rotational momentum from the orbit, and the point
being forced to oscillate about the xy-plane due to the
rotation of the stick. Furthermore it is interesting to note
that the impact of the initial ωφ of the stick has several
different effects depending on whether or not it it is in
the same or opposite direction as the orbital motion.

There are several interesting extensions of this work
which could be done in the future. One possibility would
be to use this simulation to acquire numerical data re-
lating to these systems which could be used to deter-

mine more information about the 3D /.-body problem,
such as whether it exhibits chaotic motion over long pe-
riods of time. It would also be interesting to perform
this simulation with varying masses, stick lengths, and
gravitational constants. One could also create the sys-
tem with both attracting and repelling forces so as to
study the electromagnetic 3D /.-body problem. A final
possibility would be to replace the one dimensional stick
with a higher dimensional figure such as a circle or al-
ternatively replace the point with another stick. Most of
these extensions should be useful in learning more about
the problems, arising from non-spherical celestial bodies,
which the space program is currently dealing with.

[1] F. King, /. (Sr.I.S., College of Wooster, 2009).
[2] S.T. Thornton and J.B. Marion, Classical Dynamics of

Particles and Systems (Thomson Learning, Inc., 2004).

[3] A.J. Maciejewski, Celestial Mech. Dyn. Astr., 63, 1
(1995).


