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The flow of a fluid around a barrier was simulated by numerical integration of the Navier-Stokes
equations. The methods utilized include forward time central space finite differencing, a staggered
computational grid, and the Euler-Cromer algorithm, which allowed for the observation of well
known effects such as reflection, interference, and vortices. More complex and striking features,
such as low velocity zones, vortex eyes, and high velocity tails preceding the vortices, were also
revealed by the simulation.

I. INTRODUCTION

The properties of fluids are so different from the
less elusive solid environment that people normally see,
touch, and otherwise experience that the flow of fluids is
of almost universal fascination. People create fountains
in cities, seek out waterfalls in the wilderness, sit by lakes
or streams, and raft down raging rapids. All of these in-
teractions involve a fascination with water, whether the
flow is controlled or natural.

Fluid flow can be classified by three main regimes.
There is the regime of laminar flow, which involves the
most gradual passage of water, such as waves on a lake.
An intermediate regime develops as more complex struc-
tures form, including Von Kármán vortex streets, which
are trails of whirlpools caused by interaction with an ob-
ject in the flow (Fig. 1). The last regime is that of tur-
bulence (Fig. 2).

FIG. 1 Photograph of Von Kármán vortex street off the coast
of Chile near the Juan Fernandez Islands as seen from space.
The vortices are formed in clouds. Image obtained from ref-
erence (1).

These regimes of fluid flow can be characterized by
different ranges of Reynolds numbers R, which are ap-
proximately equal to the inertia of the fluid divided by
its viscosity. For laminar flow, the Reynolds number is
low. An increase in the Reynolds number leads to more
complex behavior as the flow of the fluid moves toward
turbulence.

Turbulence is a truly different state than the lami-

FIG. 2 Photograph of turbulence in water after passing an
obstacle. Image obtained from reference (1).

nar flow of a fluid, which is well organized and symmet-
ric. Similarly, Von Kármán vortex streets are symmet-
ric. One eddy emerges on the left of an object, then
one on the right, then one on the left, and so on. Unlike
these previous variations of fluid flow, turbulence appears
completely chaotic and not symmetric. The questions
emerge: why does the symmetry break? Where does the
turbulence come from?

The answer to these questions is believed to reside
somewhere in two innocuous looking second order partial
differential equations called the Navier-Stokes equations
for an incompressible fluid:
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Eq. 1 is Newton’s law of conservation of momentum, and
Eq. 2 is a conservation of mass equation for an incom-
pressible fluid; together, these equations are the math-
ematical representation of the physical reality of fluids.
Somewhere in these equations is the answer to the ques-
tion of why turbulence occurs, why chaos ensues, though
where precisely is yet a mystery.

This project approaches this mystery from a compu-
tational position with the intention of investigating the
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nature of fluid flow by observation of the transition from
laminar flow to turbulence. To accomplish this aim a two
dimensional virtual wind tunnel was created, the concept
of which is fairly simple. It is a rectangle which allows
for the passage of fluid from one end to the other. In
the center of the wind tunnel, there is an object (vertical
line) for the fluid to flow around. By observation of the
behavior of the fluid in this tunnel information can be
gained about the nature of fluid flow around an obsta-
cle, which with high enough Reynolds numbers, produces
Von Kármán vortex streets and turbulence.

II. THEORY

Deeper discussion of fluid flow requires additional un-
derstanding of the characteristics and motion of fluids,
particularly with respect to their compressibility and re-
sponse to shear and pressure forces.

A. Compression

The first of these three topics, compressibility, asks the
question of whether the density of the fluid can change.
Since density is the ratio of mass to volume, this is asking
if one can fit more fluid into a space than was previously
present by application of pressure. Considering an ev-
eryday example of a fluid, water, it is observed that it
is difficult to fit more water into a space than fills that
space naturally. This fluid is not perfectly, but nearly, in-
compressible. The opposite of an incompressible fluid is
a compressible fluid, for example, any common gas. All
fluid is somewhat compressible, which becomes partic-
ularly evident when a fluid travels a significant portion
of the speed of sound, as there is compression due to
shock waves. However, in this simulation, the simplify-
ing choice of using an incompressible fluid will be made,
which implies that the density of the fluids studied will
be constant and the fluid will travel less than the speed
of sound.

B. Shear

Though essential to this simulation, the incompress-
ibility of the fluid is more a description of how it does
not move than of how it does. To broach the idea of how
fluid does move, shear force is considered, which is the
force resultant from action tangential to the fluid. The
strength of the shear force depends heavily on the viscos-
ity, which is the amount of clinginess that each molecule
exerts on all of the others by friction. The more at-
tachment each molecule has on the others around it the
more the fluid will remain together and the greater the
influence of shear force. Fluids of lower viscosity, such
as water or gasoline, are observed to be less effected by
shear force in comparison to fluids of greater viscosity,
such as molasses and pudding.

C. Pressure

Further description of the motion of a fluid may be
obtained through the consideration of the pressure force,
which is a force acting perpendicularly on a fluid and
resulting from the objects and other fluid surrounding
the fluid in question. Since the area surrounding each
bit of fluid is not uniform in most situations, there is a
gradient of zones with higher and lower pressures. These
differences in pressure cause the fluid from higher pres-
sure zones to be forced into areas of lower pressure, which
then places more pressure on the fluid in the lower pres-
sure areas, causing movement throughout the fluid in a
chain reaction until the pressure reaches equilibrium. If
the fluid is not contained but moves continuously, such
as in a stream or wind tunnel, then equilibrium is never
reached and the fluid will continually experience pressure
force.

D. The Navier-Stokes Equations

The first of the Navier-Stokes equations for an in-
compressible fluid represents the incompressibility of the
fluid, and may be stated that the divergence of the ve-
locity must equal zero

−→∇ · !v = 0. (3)

This equation also signifies conservation of mass for the
fluid, which is recognized more easily when this equation
is multiplied by the density of the fluid, and thus refined
to state that the divergence of the mass current equals
zero.

The second of the Navier-Stokes equations comes from
Newton’s law of conservation of momentum. As only
shear and pressure forces are at work on the fluid, this
can be written for a unit volume of fluid as

ρ
d!v

dt
= !fp + !fs, (4)

and rewritten as

ρ
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by use of derived equations for shear and pressure forces.
By recognizing that the total derivative of the velocity

receives contributions from the change of the velocity of
the particle and also the velocity of the fluid at a point,
Eq. 5 can be expanded to complete the Navier-Stokes
equations for an incompressible fluid

∂!v
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−→∇ · !v = 0. (7)

For convenience, this initial derivation the Navier-
Stokes formulas may be manipulated into a variety of
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forms. The form of choice in this simulation consists of
three coupled, non-dimensional, partial differential equa-
tions proposed by Hoffmann and Chiang (2). The first
equation describes the conservation of mass and the other
two equations are conservation of momentum equations
from Newton’s law as follows
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and where the velocity has been broken into components
such that !v = x̂u + ŷv and R = ρ∞V∞L/µ∞. Here,
ρ∞, V∞, and µ∞ are the density, velocity, and viscosity
at an infinite distance from the barrier interaction, and
L is a length scale. Together, these three equations are
equivalent to Eqns. 6 & 7.

III. DEVELOPMENT

The implementation of what has been developed in
the theory began with the staggered computational grid.
The second major aspect was the forward time central
space differencing scheme (FTCS) used to numerically in-
tegrate the Navier-Stokes equations by the Euler-Cromer
algorithm. Next, the boundary conditions were imple-
mented with periodic boundaries along the sides of the
tunnel and fans pointed in the x direction at the ends.
Lastly, a barrier was inserted into the middle of the tun-
nel, as the goal of this simulation is to study flow around
a barrier as a way to investigate the origins of turbulence.

The perhaps least known method was the implementa-
tion of a staggered computational grid of which a diagram
is shown in Fig. 3. The basic concept of the staggered
grid is that different types of information are recorded for
different vertices on the grid, serving as a complicated co-
ordinate system. In this simulation, pressure information
is recorded on the primary grid (blue solid lines), while
the velocity is recorded for intersections of the secondary
grid (dashed red lines) with the primary grid. The x com-
ponents of velocity u are recorded for the 1/2 grid lines
in the î direction and the whole grid lines in the ĵ direc-
tion, while the y components of velocity v are recorded
oppositely.

By using this scheme, the stability of the program
is improved over a more simple single grid, through a
strengthening of coupling between the pressure and ve-
locity variables (2). Also advantageously, this grid sim-
plifies the definition of pressure and velocity boundaries,
such as the barrier which the fluid flows around. While
the velocity of the fluid at the surface of a solid is well
known to be zero, the pressure at the intersection of a
fluid with a solid is not. Rather than attempt to answer
that question, it is avoided by the use of a staggered

FIG. 3 Diagram of the staggered grid. The primary grid is
shown as solid blue lines, whose vertices hold the pressure.
The secondary grid is shown as dotted red lines, and the in-
tersections of this grid with the primary grid hold the velocity
information. The area, excluding the boundaries, over which
pressure is defined is shown as a blue square, the area of defi-
nition for the y component velocities in an orange horizontal
rectangle, and the area for the x component velocities as a red
vertical rectangle. Points outside these rectangles are bound-
aries for the system. Diagram provided by reference (3).

grid, which at the boundaries does not require pressure
definition.

A second consideration in the construction of the sim-
ulation was the set of initial conditions to use for the
fluid. To remain simple, the initial pressure everywhere
was defined to equal one. The most economical option
for the velocity was to begin the fluid flowing at the ve-
locity of the fan, immediately starting the system rather
than necessitating a period of waiting before the collision
of the fluid with the barrier.

IV. DATA & RESULTS

The basic progression of the program is that the fluid
interacts with the barrier, then vortices form, and lastly
these become more pronounced as the fluid flow across
the entire simulation is more effected.

The flow provided in Figure 4 for observation was simu-
lated at a Reynolds number of 280. Each point is colored
based on the magnitude of the velocity

√
u2 + v2. The

dark blue vertical line is the barrier, at which the velocity
is by physical requirement zero.

The wave that propagates back from the barrier as a re-
sult of the interaction with the wall in the middle picture
of Fig. 4 is worth noting, and a testament to the reality
of this simulation, because a wave would propagate back
from the barrier radiating away from the collision in re-
ality. On the left edge of the simulation, one reflected
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wave interacts with another producing constructive and
destructive interference. Additionally, it is interesting
that at the center of the barrier there is a small bubble
of very low velocity, and another small low velocity circle
slightly after and between the vortices (seen as the brown
loops).

FIG. 4 The colored speed field resulting from a Reynolds
number of 280. Blue represents low velocities, green middle
velocities, brown higher, and white highest.

FIG. 5 Closer view of the same picture as Fig. 4. The image
is drawn with the addition of velocity vectors, with length
proportional to the velocity. High velocity trails are visually
identified by yellowish lines preceding the vortexes and punc-
tuated by a small brown speck.

Taking a closer look in Fig. 5, other locations of low
velocity are observed at the center of the vortices, which
seem particularly interesting as points of stability in an
increasingly wild environment. Of additional note is the
observation of higher velocity tails coming from the vor-
texes and culminating in a peak at the furthest end of
the tail.

A last image to share is from a higher Reynolds num-
ber simulation (500) than the previous, and also with a
smaller barrier than previously. Features of the last series
of pictures are also very present in this higher Reynolds
number case shown in Fig. 6. Two vortices have formed
along each corner of the obstacle, a green wave is propa-

FIG. 6 Picture of a flow with Reynold’s number 500. Demon-
strates features of vortices, reflected waves, low velocity zones,
and vortex eyes.

gating to the left and a yellow wave to the right, and two
low velocity zones are seen, one before the barrier and
one immediately after the vortices. There are also little
zones of calm in the vortex centers, similar to an eye of
a hurricane, and small high velocity tails preceding the
vortex.

V. CONCLUSIONS

This simulation culminated in the observation of vor-
tices resulting from fluid flow around a barrier. Addi-
tionally, low velocity eyes and high velocity tails were
associated with the vortices, and low velocity areas were
observed before and after the barrier interaction.

Overall, this project seems to have provided a suc-
cessful initial visualization of fluid flow around a barrier.
Further investigation of the high velocity trails would be
interesting, but more important than this is increasing
the Reynolds numbers to observe the beginning of tur-
bulence. Future improvements would involve optimiza-
tion of the integration and stability conditions for speed
and accuracy. Other future work could also involve re-
working the boundary conditions so that there would be
no bouncing back from the sides of the simulation or the
fan.

References

[1] Wikipedia. 2008. Wikipedia. 25 March 2008. <http://en.
wikipedia.org/>.

[2] K.A. Hoffmann and S.T. Chiang, Computational Fluid Dy-
namics, Vol. 1, (Engineering Education System, Whichita,
KS, 1998).

[3] J. Lindner, personal communication April 2008.


