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An experiment was performed which measured the time between falling drops in the leaky faucet
system, and a simulation of a the leaky faucet was created by approximating the motion of the drop
as a growing mass on a spring. Periodicity and chaos were found for both the simulation and the
experiment. However, not enough data were collected to get conclusive results.

I. INTRODUCTION

In 1977, before chaos theory was a recognized part
of physics, a graduate student at the University of
California-Santa Cruz abandoned his nearly finished doc-
toral thesis to start exploring chaos. Robert Stetson
Shaw started his study using computer simulations and
the Lorentz equations to find chaos in simple systems.
When the need for a physical system arose, Shaw began
to experiment with the dripping faucet. The familiarity
and the simplicity of the system made it ideal. As Shaw
discovered, the dripping faucet provided an excellent ex-
ample of a system with dynamics which start completely
predictably, and then rapidly become unpredictable and
chaotic [1].

II. THEORY

A water faucet is one of the most ordinary devices, fa-
miliar to almost everyone. The basic setup of the system
is simple. A reservoir of water is attached to a faucet.
Water drips from the faucet with some flow-rate and the
time of each drop is measured. The flow-rate of the sys-
tem is determined by the opening of the faucet, and by
the height of the water in the reservoir.

Traditionally, the data are shown as the time between
drops T,,, where T,, for the n** drop is the time between
of drop n and the previous drop. The data in this form
can be displayed as plots of T}, vs. T}, 1, which are a type
of Poincaré section plot. Thus, the chaotic data can be
shown and analysed as chaotic attractors, or mappings
of the changing dynamics of the system in phase space
[1].

As well as exhibiting simple periodic behavior, the
leaky faucet demonstrates a period doubling regime. The
system starts with all T}, the same, which is simple peri-
odic motion called period-1 behavior. At a slightly higher
flow-rate, the system will move to having two different
values of T, so that T;, = T;,42. When this occurs, the
period is said to have doubled becoming period-2. As
the flow-rate increases, the system moves to period-4,
characterized by four different values of T,,. The system
continues through this period doubling regime until it be-
comes chaotic. This period doubling path to chaos can
be used to find a constant, known as Feigenbaum’s delta
0, which adds predictability to the chaos of the system.

FIG. 1: The mass on a spring approximation of the drop as
it begins to drop (left), continues (middle), and reaches the
critical length just prior to dropping from the spring (right).

Part of the appeal of the dripping faucet as an example
of chaos is that the mechanics of the dropping water can
be simplified and approximated greatly.

If the shape and the internal motion of the drop are
ignored, the drop can be treated as a growing mass on a
spring, as shown in Fig. 1. Using this assumption, the
system can be simulated as a damped harmonic oscillator
with a mass varying as a function of time. Using Hooke’s
law, the acceleration a of the system is

a(erm)Jrg (1)
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where x is the position of the spring from top of the
spring, v is the velocity of the drop, m is the mass of
the drop, k is the spring constant of the oscillator, b is
the damping parameter, and g is the acceleration due to
gravity [2]. Physically, the elastic constant k represents
the surface tension of the fluid and the damping param-
eter b represents of the friction between the faucet and
the fluid [3].

As the mass of the drop increases, the drop falls and
oscillates according to the acceleration a given in Eq.1.
When it reaches some critical distance x., a percentage of
the mass falls off and the remaining mass rebounds and
then continues to grow into the next drop. The oscilla-
tions of the spring cause the system to become chaotic.
The drop falls when it reaches the critical length z.. As
shown in Fig. 2, if the drop is at the top of an oscillation,
it will take slightly longer to reach z.. Thus, the mass of
the drop at the critical length M, will be slightly larger.

The change in mass affects the amount of mass which
rebounds to start the next drop[3]. Therefore, the os-
cillations of the spring change a significant number of
the parameters for each drop, and the system becomes
unpredictable and chaotic.



FIG. 2: The oscillation of the spring affect when the drops
fall. The green line is the critical length x., the dashed lines
represent the oscillation of the spring. Drop A is at the bot-
tom of an oscillation as it reaches the critical length. Drop
B is at the top of an oscillation at the same time. Therefore,
drop A will reach the critical length and fall from the spring
before drop B.
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FIG. 3: A glass bottle was used as a reservoir for the water.
This bottle was connected to the Nupro faucet, which could
be finely adjusted to control the flow rate. The water dripped
into a bucket set on the floor. To record the times of the
drops, a laser was shone through the path of the drops, and
its signal was recorded by a photodiode connected through a
circuit to a computer.

III. PROCEDURE

The experimental apparatus was setup as shown in Fig.
3. To count and measure the time of the drops, a HeNe
laser and a photodiode were used. The laser was directed
so that the dripping water interrupted its path. Thus,
anytime the photodiode was not sensing the laser, a drop
was passing.

To record the data, the photodiode was connected to
a computer and an oscilloscope through a breadboard
circuit. The circuit, explained fully in Fig. 4, reduced the
noise of the signal using a Schmitt trigger and then sent
the signal to a computer using a National Instruments
USB-6009 device. Data was collected at a sampling rate
of 500 Hz, which ensured that each drop was detected.

Once the data was collected, IgorPro was used to find
the time between the drops T,, = time of drop n —
time of drop (n — 1) from the raw data. Using this ma-
nipulated data, I was able to produce Poincaré sections
of T), vs. Thry1.
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FIG. 4: To collect the data from the dripping water, the
photodiode (squiggly arrow and notched arrow) was con-
nected to the computer and an oscilloscope through this cir-
cuit. The power for the photodiode was provided by a 5 volt
power source. The power supply also powered a Schmitt trig-
ger(triangle with wave) with an inverter (small circle). The
signal from the photodiode passed through the Schmitt trig-
ger to the computer. The circuit served not only to connect
the photodiode to the computer, but also to reduce the noise
of the data by sending it though the Schmitt trigger.
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FIG. 5: The drop as it reaches the critical length and a mo-
ment later when it has been split into a falling drop and a
rebounded mass.

IV. IMPLEMENTATION

To implement the simulation of the dripping faucet,
Euler-Cromer integration was used to update the posi-
tion and the velocity of the drop using the acceleration
calculated from the damped harmonic oscillator approxi-
mation, given in Eq. 1. Each time through the algorithm,
the position was checked to determine if the drop should
fall. If the distance x of the drop was less than the critical
length, the mass was updated according to the flow-rate,
dM/dt. If the distance x of the drop was greater than or
equal to the critical length, part of the drop would fall
from the spring and part would rebound to start the next
drop. The falling drop had a mass proportional to the
velocity v, of the drop at the critical length. As shown
in Fig. 5, the falling mass My is equal to oM v., where
« is a user assigned proportionality constant. The rest
of the mass of the drop M is equal to M. — My rebounds
instantaneously, as shown in Fig. 5, to the position z = 0
and also has its velocity v set to zero.
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(a)A period-1 section plot from the
computer simulation. (k = 6.6, b = 3,
g =9.8, critL = 2.45, My =0,
dM /dv = 0.09).
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(b)A period-1 section plot from the physical
experimental.

FIG. 6: Both the computer simulation (a) and the experiment (b) showed the expected period-1 behavior with a single point.
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(a)A period-2 section plot from the
computer simulation. (k = 6.6, b = 2.34,
g =098, critlL = 2.5, My = 1.2,

dM /dv = 0.32).
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(b)A period-2 section plot from the physical
experiment.

FIG. 7: Both the computer simulation (a) and the experiment (b) produced clean period-2 data, symmetric across the xy-line

as expected.

V. DATA, RESULTS AND EXPLANATION
A. Period Doubling

The most uninteresting result of the dripping faucet is
period-1, which is also the most common. I was able to
find period-1 easily in both the simulation and the phys-
ical experiment. For period-1, T, should always equal
Th+1. To help visualize this, I added the = = y line with
slope 1 to all of the Poincaré section plots. As shown in
Fig. 6, the period-1 data falls directly on the line.

For period-2, there should be two drop times 7T;,, A and
B. Thus, the pattern of the period ought to be ABAB
repeatedly, producing a section with two data points
symmetric about the xy-line. I found period-2 behav-

ior which demonstrated this, shown in Fig. 7. T also
found noisy period-2 behavior where the two drop times
were repeated irregularly.

Continuing along in the period doubling regime, the
simulation produced a very clean period-4. Unfortu-
nately, for the experimental data, I never found a clean
period-4. However, I did find a four by four grid which
were shown to be a noisy period-4. The grid was caused
by four distinct periods T;,, but they repeated in an un-
predictable pattern.

For experimental period-4 it is quite difficult to deter-
mine the periodicy from the section plot and it is more
informative to look at the histogram, shown in Fig. 9(a)
and the plot of T,, alone, shown in Fig. 9(b). In this
case the data are remarkably clear, with virtually all the
T, falling along the four lines, which indicates period-4
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(a)A period-4 section plot from the
computer simulation. (k = 6.6, b = 2.34,
g=9.8, critL =2.5, Mg =1.2,

dM /dv = 0.32).
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(b)A period-4 section plot from the physical
experiment.

FIG. 8: The computer simulation (a) showed clean period-4 results, but the experiment (b) never showed a similar period-4.
When only four different T;, were being used, the experiment produced the grid above.
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FIG. 9: The histogram (a) and the T}, vs. point number (b) for the experimental period-4 data.

behavior.

I had a very hard time finding period-8, let alone a
period-16, in either the experiment or the simulation.
The period-8 from the simulation, shown in Fig. 10(a),
has 8 points, but is not what was expected. Rather than
being on a grid, like the points of period-2 or period-4,
the points of period-8 seem to almost lie along a curve.

As for the experimental data, the data shown were one
of my earliest data runs, and were not identified as pos-
sibly period-8 until after the period-4 shown in Fig. 8(b)
was found. Unfortunately, this data was taken before I
was monitoring the depth of the water in the reservoir,
and is therefore not repeatable. However, as can be seen
in Fig. 10(b), again the data forms a grid, although it is
not quite an 8 by 8 grid.

Like period-4, the possible period-8 experimental data
are much easier to view as a histogram and the T}, plot.
If you count the lines on the histogram, shown in Fig.
11(a), you’ll find that there are 10 lines, not counting
the line at T,, = 0, which is an artifact of the procedure.
As for the plot of the T}, it is possible to discern 6 lines

before the data are scattered. Thus, these data are not
conclusively period-8. However, it may be noisy period-8.

The histograms of the period-4 and period-8 data in-
terestingly appear to follow an exponential decay. The
two histograms, shown in Fig. 12 have been overlaid
with an exponential fit. The period-4 histogram, shown
in Fig.12(a) are very well fit by the exponential. Even
the longer period values of the period-8 histogram, shown
in Fig.12(b) is well fit, although the highest point of the
histogram does not lie near the fit curve. Given more
data at those parameters, it is possible that the period-8
data would come to fit the exponential decay as well as
the period-4 data. As interesting as this behavior is, I
can make no conclusions about it.

B. Chaos

Excitingly, one of the first chaotic attractors that I
found, using my simulation, was virtually identical to
one Shaw found when he pioneered the study of chaos
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(a)A period-8 section plot from the
computer simulation. (k = 6.6, b = 2.34,
g=9.8, critL =2.5, Mg =1.2,

dM /dv = 0.32).
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(b)A period-8 section plot from the physical
experiment. These data were taken when the
reservoir depth was known.

FIG. 10: Both the computer simulation (a) and the experiment (b) resulted in questionable period-8 data.
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FIG. 11: The histogram (a) and the T, (b) for the experimental period-8 data.

and the dripping faucet. Shown in Fig. 13(a), the attrac-
tor is simple, but the data is chaotic, showing extreme
sensitivity to initial conditions.

When I found chaos in the physical experiment, one
of the data runs resulted in a similar attractor, shown in
Fig. 13(b). Oddly, although the two attractors in Fig. 13
are of similar shape, they are inverted. The experimental
attractor is almost an upside-down version the simulation
attractor. It is possible that although the attractors are
similar in shape, they come from significantly different
parameter regimes, which caused this flipping. However,
much more data would need to be acquired and analyzed
before that conclusion could be made.

Other chaotic attractors were found, both with the
simulation and with the experiment. For the most part,
the chaotic attractors from the simulation were not simi-
lar to those from the experiment. The two shown are the
most similar.

VI. CONCLUSION

I have confirmed that the dripping faucet demonstrates
both period doubling behavior and chaos. Although my
data do not significantly contribute to the understand-
ing of the system, we have demonstrated that the leaky
faucet exhibits a surprising wealth of complex behavior.

Even with such a simple system, the small amount
of data that I collected demonstrates how much can be
studied from the dripping faucet. Classifying the chaotic
attractors of the system and finding the value of Feigen-
baum’s delta for the period doubling regime would be
an excellent way to compare the leaky faucet to other
chaotic systems. The grid pattern which was developing
in the period doubling regime was unlike any data I came
across in scientific journals or books. Determining if that
result was a real effect or just an effect of the my setup
would be a valuable way to expand upon my project. It
could also be interesting to determine if the exponential
fit of the period-4 and period-8 histograms was purely ac-
cidental or if there was some reason or theory behind that
behavior. Lastly, we could determine the reason for the
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FIG. 12: The histogram from the experimental period-4 data fit with a decaying exponential (a) and the histogram from the
experimental period-8 data fit with a decaying exponential (b). No conclusions can be made about this result.
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(a)A chaotic section plot from the (b)A chaotic section plot from the physical
computer simulation. (k= 6.6, b =2, experiment.
g =29.8, critL = 2.35, Mo =0,

dM/dv = 1.67.

FIG. 13: The chaotic attractor found by my computer simulation (a) is one of the attractors Shaw found when he worked with
the dripping faucet simulation. The chaotic attractor of the experiment (b) is a similar shape, but is upside down.

inverted chaotic attractors, and whether any interesting science is behind this inversion.
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