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The fractal dimension and self-similarity of portions of an image formed by chaotic light scattering
were calculated. Chaotic light scattering was achieved by stacking four mirrored spheres into a
pyramid and covering three of the four sides with colored cloth; light was shone through the cloth.
The fourth, and open, side was used to look into and take pictures of the image formed by the
colored light rays. The image produced a fractal and by looking at the center of the fractal, the
dimension was calculated to be 1.32± 0.04. The dimension of the three fractals on the sides of the
image in the center were calculated to be 1.13± 0.06. Self-similarity was determined to be present
in the fractal.

I. INTRODUCTION

A. Chaotic Light Scattering

Chaotic scattering models complex phenomena in sev-
eral physical systems. It has multiple applications and
has been studied in various areas of physics such as chem-
ical reactions, celestial mechanics, fluid dynamics, atomic
and nuclear physics, and electron scattering in semicon-
ductor microstructures [1, 2]. Chaotic scattering with
light has been studied by many different people. The
majority of the work has come from Dr. Edward Ott at
the University of Maryland beginning in the late 1980’s.
Although most of his work is theoretical and computa-
tional, there been some experimental work. David Sweet,
a graduate student working under Dr. Ott, investigated
the topology of the paths of light rays escaping from the
“inner chamber” of four mirrored spheres. The spheres
were stacked in a pyramid. Light shone through colored
cloth placed over the empty spaces between the spheres
[2].

In 2001, David Miller replicated the experimental
setup of the University of Maryland Chaos Group to
demonstrate chaotic light scattering for his Junior Inde-
pendent Study self-design project. He also used a com-
puter simulation of the same experiment to help with
some limitations in visualizations. He created a new ar-
rangement of spheres and observed several of the same
properties as the original group, including the Wada
Property [3].

B. Fractals and Fractal Dimensions

The term fractal was coined by Benôıt Mandelbrot in
the winter of 1975 while preparing for his first publica-
tion. A name was needed for his new type of geometry,
shapes, and dimensions. The word fractal comes from
the verb “frangere” (to break). [4].

As James Gleick said,“In the mind’s eye, a fractal is
a way of seeing infinity” [4]. Fractal geometry is a way
of dealing with complex systems that have no character-
istic length scale. One well known example of this is a

coastline. In Mandelbrot’s 1967 paper, How Long Is the
Coast of Britain? Statistical Self-Similarity and Frac-
tional Dimension, he examined self-similar curves that
have non-integer dimensions between 1 and 2. Fractal
dimensions were also created by Mandelbrot. They are a
way of measuring qualities that otherwise have no clear
definition, such as the degree of roughness, brokenness, or
irregularity of an object. He determined specific ways of
calculating the fractal dimension of real objects. This al-
lowed his new geometry to describe the irregular patterns
found in nature while the degree of irregularity remains
a constant over different scales.

C. Self-Similarity

A self-similar object is almost identical to a part of
itself, so the whole has the same shape as one or more
of the parts. There are three types of self-similarity: ex-
act, approximate, and statistical. Exact self-similarity
only occurs in mathematically defined fractals where con-
straints from the physical world do not apply. This means
the fractals are not naturally formed objects, but objects
that can only exist by a strict mathematical definition.
The most famous example of this is the Koch snowflake.
Because it is both symmetrical and scale-invariant it can
be magnified continuously without changing shape. Ap-
proximate self-similarity is the most common. It is seen
when looking at an object at different scales because
structures are seen that are recognizably similar but not
identical. One example of this is the mathematically de-
fined system called the Mandelbrot set. Approximate
self-similarity can also be found in surprising places in
nature like in the leaves of a fern. Almost all self-similar
patterns are approximately self-similar. Sometimes the
self-similarity isn’t visually obvious but there may be nu-
merical or statistical measures that are preserved across
scales. One example of this is the fractal dimension of
1/f noise [4, 7].
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II. THEORY

A. Chaotic Light Scattering

Before describing chaotic scattering, scattering itself
must first be defined. Generally speaking, it is the prob-
lem of obtaining the relationship between an input vari-
able characterizing an initial condition for a dynamical
system and an output variable characterizing an appro-
priate defined final state of the system. One example of
this is the motion of a point particle in a potential V (x),
where V (x) is zero or very small. Outside the scattering
region, the orbit moves in a straight line. The orbit ap-
proaching the scattering region interacts with the scatter
then leaves the region [1]. In chaotic scattering, how-
ever, an initially freely moving orbit enters a scattering
region and evolves chaotically before it escapes and re-
turns again to free motion [2]. Thus, a small change in
the direction of the approaching orbit could cause a great
change in the exit direction.

B. Fractal Dimensions

A fractal is a fine structure at arbitrarily small scales.
It is generally too irregular to be easily described in tra-
ditional Euclidean geometric language. Also, it is usually
self-similar (at least approximately or statistically) and
has a simple and recursive definition. [6]

In fractal geometry, the fractal dimension D is a statis-
tical quantity that gives an indication of how completely
a fractal appears to fill space, as one zooms down to finer
and finer scales. For example, a point has a dimension of
0, a line has a dimension of 1, and a surface has a dimen-
sion of 2. But a fractal like Koch’s snowflake, a coastline,
or a leaf will have a fractal dimension between 1 and 2.
Going into the 3rd dimension then deals with volume. In
between 2 and 3 is a crumpled 2D object, like aluminum
foil, cauliflower, a brain, or a lung [7].

To get the dimension of a fractal, first suppose we have
a number of boxes with all the same side length r. The
boxes have area rn. Cover the fractal in a N(r) number
of boxes. The boxes are then reduced in size by the scal-
ing factor of (1/r)n, and the number N(r) is determined
again. We can calculate N(r) as follows:

s2 = N(r) ∗ rn. (1)

By moving the area rn to the other side, we get

N(r) =
s2

rn
. (2)

Because s2 is a constant, we can replace it with C. This
gives

N(r) = C
(1

r

)n
. (3)

We must solve for n and then take the limit as r goes
to zero to get the dimension. Doing this yields

n =
lnN(r)− lnC

ln(1/r)
(4)

We can ignore the constant because it is negligible. We
finally take the limit of the equation above

D = lim
r→0

lnN(r)
ln(1/r)

, (5)

which gives us the fractal dimension of the object [4, 5,
8, 9].

C. Self-Similarity

A self-similar object is exactly or approximately similar
to a part of itself. A set C is called self-similar if it is
the union of small copies of itself. Self-similar structures
are scale invariant. When zooming into a picture of the
image, the image does not change.

A function is defined as homeomorphic only if it is con-
tinuous, one-to-one, and onto. This means that the limit
of the function must exist everywhere in its domain, each
x value of the function corresponds to only one y value,
and for every y in the domain there is an x in the domain
such that f(x) = y. The topological definition states that
a closed and bounded topological space X containing Rn

for some natural number n is self-similar if there exists
a finite set S indexing a set of homeomorphisms {fs}sεS
for which

X =
⋃

sεS

fs(X). (6)

Eq. 6 states that X is a union of a number of small copies
of itself.

Self-similar objects with parameters N and s are de-
scribed by as power law such as N = sd, where

d =
lnN

ln s
(7)

is the dimension of the scaling law [9].

III. PROCEDURE

A. Setup

The experiment used four 10-inch mirrored spheres
stacked in an upside down pyramid. Three of the four
sides were covered in colored cloth. After testing three
different colors were chosen: red, blue, and light green.
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FIG. 1: The setup of the experiment. Note the three different
color cloths, the three different lamps (the third is above the
red cloth and outside the picture), and the uncovered side.
This side was where all photographs where taken.

FIG. 2: The center of the fractal pattern. The fractal dimen-
sion of this shape was determined.

These three cloths were taped to the outside by masking
tape. The fourth side was the side used to take pictures.
Outside of the cloths, three lights were set up. Fig 1
shows the final version of the setup.

B. Using Photographs to Look at Fractal
Dimension and Self-Similarity

The main part of this experiment included analyzing
photographs. The pictures were taken with a Nikon D70
digital camera. With the guidance of the camera manual,
various setting were tried, including adjusting the aper-
ture and the exposure, but nothing seemed to work. With
some outside help, the pictures came out well enough that
they could be manipulated with Canvas and Graphic
Converter.

The photos were all taken in the dark either with the
camera on the tripod or while sitting on the table with
the camera being held as close as possible. There were
problems with the pictures being too fuzzy, but by tak-
ing them with the RAW setting on, so the the images
were not compressed, the fuzziness around the edges de-
creased.

FIG. 3: The triangle is outlined in pink. This one of the three
side triangles of the fractal pattern. The fractal dimension of
this was determined. By symmetry, its fractal dimension is
equal to the other two.

1. Fractal Dimensions

Fractal dimensions for four areas were determined.
Only two of these areas needed to be calculated due to
symmetry in the image. The four areas were the center
and the large triangles along the sides of the center. They
can be seen in Figs 2 and 3 respectively.

The photographs had to be worked with extensively,
as they were quite blurry. Note that the colors in Fig.
3 is different from Fig. 2 and the other pictures. In
order to see the top edge of the side triangle, the colors
were changed using the Deutan Color Blindness effect in
Graphic Converter and the picture was enlarged. For
the picture shown in Fig. 2, only enlarging was necessary,
so no color change was done. A border was drawn around
the actual fractal with a pencil to tell exactly where the
fractal was.

Calculating the fractal dimension was done by estimat-
ing the perimeter by using a divider compass. An initial
width of the step size was chosen and the number of steps
it took to go around the fractal was counted. This was
repeated four times by varying the width of the compass.
The width of the compass and the perimeter were plot-
ted on a log-log plot and the data was fit to a power law
p = cs1−D, where D is the dimension. The dimension D
can then be solved for.

2. Self-Similarity

For self-similarity, the photographs required less ma-
nipulation. There were still some problems with clarity,
which limited the extent of analysis possible. To analyze
the photos, Canvas was used to enlarge the images and
outline diamonds. The diamond was resized while the
proportions were kept the same. Canvas calculated the
area of the diamond and the length of the left most side.
The length was plotted versus the area to find a corre-
lation between the two. If the slope of the line is equal
to 2, then self-similarity is present. The relation of the
length of the side to the area of the diamond is A = αL2.
Taking the log of both sides, gives log A = log α+2 log L
The slope is the value in front of log L.
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IV. RESULTS AND ANALYSIS

FIG. 4: The center red diamond of the image has a fractal
dimension of 1.32 ± 0.04. This was found by plotting the
step size in centimeters versus the perimeter of the object
in centimeters on a log-log scale. The data were then fit to
a power law. The power is 1 − D, where D is the fractal
dimension.

FIG. 5: The side fractals of the image have a fractal dimension
of 1.13±0.06. This was only determined for one of them, but
due to the symmetric nature of the image, it is assumed for
the other two.

A. Fractal Dimensions

Only two fractals that were analyzed for dimension but
by symmetry, four were actually seen in the image. The
first fractal was the large red shape in the middle of the
image. The dimension of this is 1.32± 0.04. This means
that it has more dimension than a line, but less than a
surface. It has a larger dimension than Koch’s snowflake
by about 0.06. Fig. 4 shows a plot of the data and the
fit used to determine the dimension.

FIG. 6: The green and purple diamonds are symmetrically
equivalent. The red diamonds are different sizes than the
green and purple.

The side fractals were more difficult to analyze because
of the curved surface of the spheres. It was difficult to
get a picture in which the entire image was in focus. The
fractal dimension of these three are 1.13 ± 0.06. The
dimension is less than the dimension of the center.

B. Self-Similarity

The self-similarity was first broken up into two parts.
Note that in Fig. 6, the green and purple are the same
due to the symmetry across the middle. The analysis of
the self-similarity was broken up into two parts because it
was thought that the the red diamonds might be filling in
sizes for where the green and purple do not have triangles
of that size.

First the red was examined. Self-similarity was found
because the data had a slope of 2.048±0.001. Fig 6 shows
the red diamond used; they are outlined in yellow.

Next the green and purple areas were analyzed. The
self-similarity was also found because the slope of the
line was 1.954 ± 0.003. This includes the diamonds on
either side of the symmetric split. The green and purple
diamonds are shown in Fig. 6. They are all outline in
yellow.

By taking all of the data and plotting it on one graph
we can check to see if there is any correlation between all
of the diamonds; we see that there is. The self-similarity
present with all of the diamonds because the slope is
2.046 ± 0.004. Fig 7 shows the plot of all the data and
the power law fit used to check for self-similarity. It shows
the area of the diamond versus the length of the left side
on a log-log plot. A power law fit was done to determine
if self-similarity was present. Looking at the plot, we see
that the red diamonds are sizes in between the green and
purple diamonds. However, there is not enough data to
determine a pattern; the red diamonds became too small
to quickly and the photograph could not be magnified any
more without the images becoming indistinguishable. As
shown in Fig. 7, there appears to be a pattern starting in
the upper right corner and moving down the line towards
the left. Moving down the line, there is one green/purple
and one red again. The next group changes as there are
three green and purple diamonds and then two red ones.
Lastly we have three more green and purple diamonds.
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This is where the red diamonds became too small to de-
termine where the edges were. We do know that they are
at least smaller than the lowest point on the plot.

FIG. 7: By combining all the data onto one plot we can tell
that all the diamonds are self-similar. Interestingly, the red
diamonds are sizes in between the sizes of the green and pur-
ple. However, no conclusions can be drawn from this state-
ment.

V. CONCLUSION

The fractal dimension of the red diamond at the cen-
ter of the image is 1.32± 0.04. This value is just greater
than Koch’s snowflake, indicating that the center fractal
is more than a line but less than a surface. The fractal
dimension of the three outer, large fractals is 1.13±0.06.

This dimension is significantly less than the center. It is
still more than a line and therefore greater than dimen-
sion one. One problem with these values, however, is that
they might not be the best representation. Because the
light is reflecting off a curved surface, the borders were
curved at places and fuzzy. These values are correct for
the calculations possible and the methods used, but there
may be a more accurate method.

The self-similarity found in the image by looking at
the length versus the area of diamonds an section of
the image. The slope of the data was calculated to be
2.046±0.004. To be self-similar, this value must be 2 and
therefore, the fractal is self-similar. However, there were
not enough data to determine whether the size of the
red diamonds have any specific relationship to the sizes
of the green and purple diamonds, although there does
appear to be a possible pattern to the size. There were
some problems with the accuracy due to the shape of the
surface. Also, due to the quality of the photographs, the
scope of the analysis was limited.

Possible areas of future work include changing the
setup of the spheres and analyzing the fractal dimen-
sions and existence of self-similarity in different areas of
the image formed.
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