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This project studies Bohmian quantum mechanics, a hidden variable theory of quantum mechan-
ics that postulates definite particle trajectories. The Bohmian approach is applied to a finite square
potential barrier. Using Mathematica 6, we compute the particle trajectories in a statistical en-
semble for three different energies. It is shown that the probability for a particle to be reflected
or transmitted by the barrier approaches the values predicted by the orthodox approach to quan-
tum mechanics. This paper discusses the role of the quantum potential, a concept often associated
with Bohmian quantum mechanics. A simulation created in Mathematica 6 allows a comparison of
the orthodox and Bohmian approach to quantum mechanics. The simulation also shows the time
evolution of the quantum potential.

I. INTRODUCTION

Quantum mechanics uses a mathematical object called
the wave function to describe the state of a physical sys-
tem. The main issue in the interpretation of quantum
mechanics is whether the wave function describes all the
physical information about a system or whether it leaves
something out. A theory that interprets the wave func-
tion as describing all information about the system says
that the wave function is complete and is called an or-
thodox interpretation, since most physicists ascribe to
this view. A theory that interprets the wave function
as leaving something out says that the wave function is
incomplete and is called a hidden variables theory after
whatever it is that the wave function does not describe
[1]. Under the broad rubrics of orthodox and hidden
variable theories, there are further interpretations and
refinements. The goal of this project is to compare or-
thodox theories in general to a specific hidden variable
theory called Bohmian Quantum Mechanics, developed
by David Bohm [2–4].

Perhaps the main reason for thinking that the wave
function is incomplete is that it only describes the prob-
ability with which a measurement returns a specific value.
Experience from statistical mechanics suggests that prob-
abilities are only due to ignorance [2]. There exists an
exact specification of a physical system which accounts
for the probabilistic predictions, even if observers can-
not know the exact specification. This is not the ortho-
dox response to quantum mechanical probabilities. Most
physicists interpret the probabilities given by the wave
function as fundamental, i.e. there is no underlying ex-
act specification. Prior to a position measurement, for
example, the system does not have an exact position. All
that is true of the system is its disposition to yield certain
results of a position measurement. There are two main
reasons for the orthodox response: experiments verifying
quantum theory force us to regard the wave function as
complete, or that whatever might specify the exact state
of a physical system is theoretically cumbersome and/or
does not lead to any new prediction.

The first reason, the impossibility of hidden variables,
is often motivated by Bell’s Theorem. What Bell’s Theo-

rem shows is that a theory which postulates spatiotempo-
rally local interaction between particles, as well as hidden
variables, cannot account for the same data that ortho-
dox theories can [5]. However, Bohmian quantum me-
chanics postulates nonlocal interaction by particles, so
Bell’s Theorem does not rule it out. The second rea-
son for preferring the orthodox response over Bohmian
mechanics will be evaluated throughout the rest of this
paper. Whether this is good reason for thinking the wave
function is complete depends on the precise nature of the
proposed hidden variables.

So what are these hidden variables? Bohmian me-
chanics postulates exact particle trajectories for all time,
regardless of whether a measurement has been per-
formed. Roughly, the wave function is determined by
Schrödinger’s equation, and the particle trajectories are
guided by the wave function according to an additional
“guiding” equation unique to Bohmian theory. Bohmian
theory then postulates that in a statistical ensemble of
systems with identical wave functions, the initial posi-
tions of the particles are distributed according to a cer-
tain probability density. Bohm’s theory treats the wave
function as an objectively real part of a system [6], rather
than as a representation of the system itself. These pos-
tulates are enough to make the same predictions as or-
thodox quantum theory. One further issue arises within
Bohmian mechanics: whether an additional “quantum
potential” is required to accurately describe the particle
trajectories.

Whether Bohm’s theory is cumbersome, or leads to
any new predictions, will be examined through simula-
tion, and computation applied to a typical problem in
quantum mechanics: the square barrier potential. In sec-
tion 2, I outline Bohm’s theory in general. In section 3,
I explain the theoretical approach to the square barrier
potential. In section 4, I explain how Mathematica 6 was
used to approach this problem with both simulation and
computation. In section 5, I discuss the equivalence of
the orthodox theory and Bohm’s theory in the case of
the square barrier, and examine the use of the quantum
potential.

This paper concludes that the postulation of hidden
variables is not pragmatically useful, since acquiring the
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orthodox results from Bohm’s theory does not require
the calculation of particle trajectories. Of course, this
does not rule out other practical applications. However,
there are several advantages of Bohm’s theory. It can
explain all the orthodox results of quantum theory with-
out the notion of fundamental uncertainty, so it explains
the probabilistic results in the same way statistical me-
chanics explains probabilistic results[2]. It also teaches
us what quantum experiments do in fact imply; they do
not force notions of indeterminism, superposition, or a
special role for measurement into our theory. A main
advantage of Bohm’s theory is that measurement is a
continuous, analyzable process: it does not restrict the
validity of Schrödinger’s equation to times before a mea-
surement has been made[3]. Finally, I conclude that the
quantum potential is not a useful construct for explain-
ing behavior due to interaction with the square barrier
potential.

II. THEORY I: BOHMIAN MECHANICS

This section explains the Bohmian theory of one par-
ticle of mass m under the influence of a potential V [t, !x].
Like, orthodox quantum mechanics, Bohmian mechanics
uses the Schrödinger wave equation

ı!∂Ψ[t, !x]
∂t

= − !2

2m
∇2Ψ[t, !x] + V [t, !x]Ψ[t, !x], (1)

where ! is Planck’s reduced constant. In addition,
Bohmian mechanics postulates a guiding equation

!v[t] =
!
m

Im[Ψ∗∇Ψ]
Ψ∗Ψ

, (2)

which describes the velocity of a particle. Finally,
Bohmian mechanics considers a statistical ensemble of
systems with the same wave function and with the initial
positions distributed according to the probability density

ρ[t0, !x] = Ψ∗Ψ. (3)

These three equations constitute the core of Bohmian
theory.

To see the consequences of these equations, it is helpful
to rewrite the assumptions of Bohmian mechanics with
the wave function in polar form:

Ψ[t, !x] = R[t, !x]eıS[t,!x]/!. (4)

Schrödinger’s equation becomes two equations through
the substitution of Eq. 4 into Eq. 1, and equating
real and imaginary parts. This implies the following two
equations :

−∂S

∂t
= − !2

2m

∇2R

R
+
∇S ·∇S

2m
+ V (5)

∂R

∂t
= − 1

2m
(2∇R ·∇S + R∇2S). (6)

When Eq. 4, is substituted into the guiding equation
(Eq. 2), the guiding equation becomes

!v[t] =
∇S[t, !x]

m
. (7)

Writing the wave function in polar form also means that
the probability density is simply

ρ[t, !x] = R[t, !x]2. (8)

Multiplying Eq. 6 by 2R, and substituting Eq. 8 gives

∂ρ

∂t
= − 1

m
(∇R2 ·∇S + R2∇2S) = − 1

m
∇ · (ρ∇S). (9)

Substituting Eq. 7 into Eq. 9 gives

∂ρ

∂t
= −∇ · (ρ!v). (10)

Eq. 10 is the “classical continuity equation” [7]. It im-
plies that if the positions !x in a statistical ensemble at
time t0 are distributed according to ρ[t0, !x] = |Ψ[t0, !x]|2,
and the positions evolve according to the guiding equa-
tion (Eq. 7), then the positions at time t will be dis-
tributed according to ρ[t, !x] = |Ψ[t, !x]|2. Orthodox quan-
tum mechanics also utilizes Eq. 9, but the probability
density is the probability of making a certain measure-
ment of a position; Bohmian mechanics has said noth-
ing about measurement. The probability in Bohmian
mechanics concerns positions in a statistical ensemble.
The probability in orthodox quantum mechanics con-
cerns measurements on a statistical ensemble. Further,
although orthodox quantum mechanics uses Eq. 9, it
does not utilize Eq. 10, because the orthodox theory
does not define particle trajectories.

To summarize, the structure of Bohmian mechan-
ics is as follows. The classical potential V [t, !x] and
Schrödinger’s wave equation determine the wave function
Ψ[t, !x]. The wave function, through the guiding equation
(Eq. 2 or 7), determines the velocity of a particle. Given
an initial position, the guiding equation determines the
trajectory of a particle for all time. Finally, in a statisti-
cal ensemble with positions initially distributed accord-
ing to the probability density |Ψ[t0, !x]|2, the positions
will always be distributed according to |Ψ[t, !x]|2. This
ensures that Bohmian mechanics makes the same predic-
tions as the orthodox approach.

A. Quantum Potential

Notice that I have said nothing yet about the quantum
potential, despite its prominent role in many explications
of Bohm’s theory. This is because the quantum potential
does not need to play a fundamental role in Bohm’s the-
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ory. Eqs. 1,2, and 3 are sufficient to specify the theory
[5, 7]. However, Bohmian mechanics shares the existence
of definite trajectories, and the role of probability with
classical mechanics. To extend the analogy, we can look
at the force !F = md!v/dt acting on a particle. From Eq.
7, the force is

!F =
d(∇S)

dt
. (11)

Eq. 11 implies

!F = −∇(V − !2

2m

∇2R

R
), (12)

using Eq. 7, 5 and the identity 2(∇S ·∇)∇S = ∇(∇S ·
∇S). Eq. 12 implies that a Bohmian particle is acted on
by a quantum potential

Q[t, !x] = − !2

2m

∇2R[t, !x]
R[t, !x]

, (13)

in addition to the normal potential V .
There are several salient features of the quantum po-

tential. First, it is time-dependent and often very com-
plex (see Section 5.1). Second, it is not due to any fun-
damental force but is dependent on the wave function.
Finally, it does not need to play any fundamental role
in Bohmian theory. This is because Eqs. 1, 2, and 3
are sufficient to specify the theory. The notion of force
which was used in the derivation of the quantum po-
tential is not needed in Bohmian theory. Despite these
objections to the inclusion of the quantum potential, it
is useful in intuitive explanations of Bohmian mechanics,
and in showing that Bohmian theory approaches Newto-
nian mechanics in the classical limit (let ! → 0 in Eq.
12)[7].

III. THE FINITE POTENTIAL BARRIER

The goal of this paper is to compare the Bohmian and
orthodox approach to the finite potential barrier defined
by

V [x] =






V if − a ≤ x ≤ a (Region II)
0 if x < −a (Region I)
0 if x > a (Region III).

(14)

This potential is shown in Fig. 1. The time independent
solution outside the well is

ψ[x] =
{

Aeıkx + Be−ıkx if x ≤ −a (Region I)
Feıkx + Ge−ıkx if x ≥ a (Region III). (15)

The constant k is related to the energy by

k =
√

2mE

! . (16)

I II III

FIG. 1: The finite potential barrier is zero except between
x = −a and x = a.

The solutions outside the well are sinusoidal. When the
time dependence is added, they represent plane waves
traveling to the left or right. Since we will be considering
only particles incident from the left, we do not need the
solution representing a plane wave traveling to the left on
the right of the well. In other words, we let G→ 0. Since
the solution outside the well is a plane wave, it is not
normalizable for a single energy. To study the physical
situation, a continuous spread of energies is needed.

IV. COMPUTATION AND SIMULATION IN
MATHEMATICA

The general outline of the implementation is as follows.
First, we select parameters for the initial wave function
and barrier. Then, using Mathematica’s NDSolve com-
mand, we numerically integrate Schrödinger’s equation
for several energies that we are interested in. Next, the
solution to Schrödinger’s equation is used to compute
the quantum potential, and for initial positions selected
according to the appropriate probability density, the par-
ticle trajectories. With these data, we explore the trajec-
tories and quantum potential in several directions: static
images, transmission and reflection coefficients, and sim-
ulation. Simulation was achieved using Mathematica’s
Manipulate command.

V. RESULTS

A. Static Images

To begin to understand the behavior of a Bohmian
particle encountering this potential, we can look at tra-
jectories through the barrier for a variety of initial po-
sitions. The trajectories for 100 particles in a statistical
ensemble are shown in Fig. 2 for the energy E = V . As
the space-time plots in Fig. 2 show, as the energy in-
creases, more particles are transmitted through the bar-
rier. From these plots it also appears that the final po-
sition of the particles is a continuous function of their
initial positions. The trajectories do not overlap. The
closer a particle is to the well, the more likely it is to
pass through the barrier. This is not expected classically
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FIG. 2: Particle trajectories in a statistical ensemble. 100
initial positions are selected according to the initial probabil-
ity density. The horizontal lines show the edge of a potential
barrier of height V . The energy of the initial wave packet E
is equal to the height of the potential barrier V . The times
and positions are in generic units.

because the potential barrier does not change through
time. In the Bohmian picture, particles are guided by
the wave function. The wave function evolves through
time, so it is important when the particle interacts with
the barrier. A further disanalogy with classical mechan-
ics is that reflected particles change direction even when
they are spatially separated from the potential.

FIG. 3: The quantum potential and particle trajectories for
a finite square barrier. Fifty trajectories from the Bohmian
statistical ensemble are shown on top of the quantum poten-
tial. The energy of the initial wave function is E = V , where
V is the height of the normal potential barrier. Quantities
are in generic units.

The plot of the quantum potential Q[t, x] shown in Fig.
3 is for a single energy E = V with trajectories from the
statistical ensemble plotted on top of the quantum po-
tential. The quantum potential’s relationship to the wave
function is evident, since it undergoes rapid fluctuations
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E!1.2VFIG. 4: Transmission and reflection coefficients in the
Bohmian (points) and orthodox (lines) approaches. The ex-
pected transmission coefficient is shown in black and the ex-
pected reflection coefficient is shown in red. As the number
of initial conditions is increased, the Bohmian prediction ap-
proaches the orthodox prediction. Shown here is the E = V
case.

when and where the wave function is also undergoing
fluctuations. A plot of the quantum potential for the
system has limited uses. Although the hills prior to the
potential barrier indicate that particles will be reflected
before interacting with the barrier, it does not provide
useful information about which initial positions will pass
through and which will not. Some features are also mis-
leading. One might expect particles to be attracted to
the valleys propagating in the negative position direc-
tion, but they are not. A space-time plot of the quantum
potential is time intensive to produce, and gives limited
information about the behavior of particles.

B. Equivalence to Orthodox Predictions

The percentages of transmitted and reflected particles
should approach the values predicted by the orthodox
approach as more systems in the statistical ensemble are
considered. This is ensured in general by Eq. 8 and 9,
but we would like to show it computationally in this par-
ticular case out of general interest and to ensure that our
implementation is working correctly. The transmission
and reflections coefficients were checked at the specific
time t = 0.004. Shown in Fig. 4, the probability in a
subset of the statistical ensemble approaches the values
predicted by the orthodox integration of the wave func-
tion, as the number of initial conditions is increased.

C. Simulation

The simulation created using Mathematica’s
Manipulate command has a number of advantages
and disadvantages. There are basically two display
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FIG. 5: The initial setting for the manipulator when it is dis-
playing a statistical ensemble. The user can select from any
of three energies, and scroll, enter, or play through time. In
this setting, the initial position slider does nothing. Above
the probability density, the quantum potential is shown. Be-
low the probability density, 100 particles from the statistical
ensemble are shown.

options in which the user can select one of three ener-
gies. The user can view the quantum potential, and
a statistical ensemble shown beneath the probability
density. Fig. 5 shows the initial configuration of this
option. With an example setting shown in Fig. 6, the
other option is to view just a single particle plotted
on top of the quantum potential and normal potential.
This shows clearly how the two potentials combine to
determine the behavior of a single particle. The two
display options complement each other; the statistical
ensemble obeys the probability density, but locally,
the motion of a single particle is determined by the
potential. The manipulator helps explain the role of the
quantum potential more precisely than static images,
since the dependence of the potential on the wave
function is shown, and its effect on a particle can clearly
be seen. However, the entire quantum potential cannot
be shown without losing interesting detail on small
orders of magnitude.

The current program contains generic units. In the
code, variables for ! and m are included, although they
are set to ! = 1 and m = 1/2. The inclusion of these

FIG. 6: A display of the manipulator for a single particle ex-
hibiting interesting resonance behavior. The sharp spikes on
the left and right of the normal potential barrier are not er-
rors, but rather a very rapid change of the quantum potential.

variables is intended to make the code transparent, and
to allow the user to change these variables if desired.
However, realistic values for these parameters cause long
run times for the NDSolve command. The install file al-
lows easy extension to different energies, potentials, and
initial wave functions.

VI. CONCLUSION

This project was successful in studying the approach of
Bohmian quantum mechanics to the finite square barrier.
It was shown that the probabilities associated transmis-
sion and reflection can be accounted for by considering a
statistical ensemble with initial positions distributed ac-
cording to an appropriate probability density. The con-
cept of a quantum potential is often mentioned in the
development of Bohm’s theory. However, it is not a nec-
essary feature of the Bohmian approach. This is because
the Schrödinger’s wave equation, the guiding equation,
and an assumption about probability are sufficient for
specifying the theory. The quantum potential does not
provide “at a glance information” about behavior of the
statistical ensemble and so is not useful for judging trans-
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mission and reflection. The quantum potential is useful
for understanding the behavior of a single particle, since
the quantum and normal potential act on a particle ac-
cording to Newton’s second law. The role of the quantum
potential, and the transmission and reflection of Bohmian
particles can be explored through the manipulator cre-
ated in this project. An outstanding problem with the
manipulator and this project in general is that it cannot
handle or relate to realistic physical parameters.

An advantage of Bohmian mechanics over orthodox
quantum mechanics is that the concept of measurement
does not play a fundamental role in the theory. There is

no collapse of the wave function in Bohmian mechanics,
and probabilities are understood as arising from igno-
rance of a system’s initial conditions. Thus, Bohmian
mechanics is an antidote to the claim that a hidden vari-
able theory is impossible. This project could easily be
extended to simulating behavior in other types of poten-
tials. First, however, this would involve resolving the
issue of parameter dimensions. Investigating Bohmian
mechanics further could involve applying it to areas in
which it has an advantage over orthodox quantum me-
chanics such as dwell and tunneling times, escape times
and positions, and quantum chaos [5].
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