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Visualizations of spacetime curvature are developed in a flexible Mathematica notebook. The
Einstein field equations are derived in part, and a program is used to show a number of strange stress
energy momentum tensors. The experimental metrics include a truncated sinusoidal perturbation
and a Gaussian distribution function perturbation to the flat spacetime metric. Visual images
developed include simulating the geodesics of light rays, and graphing the stress energy momentum
tensor components in matrices of density plots.

I. INTRODUCTION

The development of general relativity theory dates
back to 1905 when Einstein first began writing and pub-
lishing work about the properties of light and the equiv-
alence of gravitational and accelerated mass. Einstein
was able to foresee that light would bend in a gravita-
tional field and exhibit quantized energy and momentum.
Such foresight was remarkable given the state of theoret-
ical physics in the early 1900’s. Einsten’s thinking was
characterized by his numerous thought experiments that
guided and developed his intuition about gravity. He of-
ten would spend long hours in a boat contemplating the
consequences of various physical interactions. He imag-
ined what he might have seen riding on a light-wave, or
what a person would feel if they were sealed inside an
accelerating box. Often these thought experiments were
simple intuitive extensions of Newtonian dynamics and
classical electromagnetism. The insights Einstein gained
from these thought experiments allowed him to devise
perhaps the greatest of all modern physical theories.

The concept of general relativity is fairly simple to un-
derstand; it is a generalization of classical mechanics to
account for the invariant speed of light and the equiva-
lence of inertial and gravitational mass. However, the im-
plementation of these ideas is astoundingly complicated.
Ten coupled nonlinear partial differential equations com-
pose the Einstein field equations that determine the cur-
vature of spacetime. An exact solution to the Einstein
field equations for a spherically symmetric mass was ob-
tained by Schwarzschild in 1915, to the surprise of many
including Einstein. A solution for a charged mass, the
Reissner-Nordstrom solution, did not appear until 1918
[1]. In 1963 Kerr was able to solve the field equations for
a rotating spherically symmetric mass, nearly 48 years
after the equations were published [2]. In 1965, New-
man synthesized the solutions for both the rotating and
charged black hole, producing the Kerr-Newman solution
[2]. These three solutions are some of the only known ex-
act solutions to the Einstein field equations. The field
equations are so complicated that a great deal is still
unknown about their possible effects.

As a consequence of the complexity of the field equa-
tions, all theoretical gravity research involving arrange-
ments of mass must be done computationally. The field

equations can be written symbolically as relations be-
tween tensors G ∼ ∂Γ+ΓΓ ∼ κT where G is the Einstein
tensor that governs curvature, T is the stress energy mo-
mentum tensor, the source of curvature, ∂ represents par-
tial derivatives, and Γ is the connection that determines
the world-lines of free particles in spacetime. Finding Γ
with a specified T involves integrating the field equations
a number of times. Finding the metric, the tensor that
clearly denotes the warping of various aspects of space-
time, requires even more integration. Any attempt to
integrate these equations for a number of different stress
energy momentum tensors involves great computational
power, time, and complexity.

To sidestep the difficult integration we have developed
a program that efficiently produces the stress energy mo-
mentum tensor from a specified metric. This compu-
tational route involves only derivatives and is therefore
much more simple and accurate to computationally per-
form. The program outputs easily understood and intu-
itive graphics that describe the stress energy momentum
tensor, the metric, and the geodesics. We have used the
program to explore a number of different metrics and
draw conclusions about their behavior and physical real-
izability. The program has the adaptability to be general-
ized to a more systematic experimental approach guided
by human input, and future research is suggested along
those lines.

The importance of visualization and intuition in the
evolution of the theory of general relativity cannot be
understated. The research program presented here pro-
vides the user with a powerful visual tool to explore the
implications of spacetime curvature.

II. GENERAL RELATIVITY PRIMER

The theory of general relativity is the final form of
an elegant restructuring of classical mechanics. The dis-
covery of the invariant speed of light c around the turn
of the 20th century fundamentally changed the principal
concepts that all theories of motion had been built upon.
Time and space are unified by the invariant speed and
are no longer immutable as they were in classical mechan-
ics. The effects of this unification are described by the
theory of special relativity, and the ultimate implication
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for inertial motion is described in the theory of general
relativity.

Any conversation about mechanics must involve a loca-
tion of an observer. A reference frame of an observer con-
sists of the coordinates, position, motion, and all other
measurements made at the particular point in space (and
time) where the observer exists in the Universe. An iner-
tial reference frame (IRF) is subject to no external forces.
A global reference frame is able to make consistent mea-
surements at all locations and times in space and time.
It is standard practice in special and general relativity to
set the constants c = 1 and G = 1. We shall adopt this
convention for the rest of the work.

Consider the paradox of relative motion created by an
invariant speed. Two observers move in relation to a
light source. Observer A in reference frame O moves
toward the light source at a speed v. Observer B in ref-
erence frame Ō moves away from the light source. Each
measures the speed of the light. In both the O and Ō
reference frame, the speed of light is exactly c. Classical
theory predicts that observer A should measure a faster
speed because her velocity would be added to the speed
of light. Similarly, observer B would classically measure
a slower speed. In order for both these observations to be
true, something must be happening to the way observers
A and B are measuring space and time. The reference
frames O and Ō must have relative units of measurement.

In special relativity, time and space warp in order to
preserve the invariant speed c in all reference frames.
Special relativity predicts that lengths will contract and
time will dilate (slow). I now principally follow the lec-
ture notes of Lindner [1].

Time dilation and length contraction indicate that
events exist at locations in both space and time unique
to each reference frame. The location can be represented
by a 4-dimensional spacetime vector defined as

X =





t[λ]
x[λ]
y[λ]
z[λ]



 .

The affine parameter λ is a parameter that controls the
evolution of the position in the 4-dimensions of space-
time. The evolution of a 4-vector through spacetime is
called the world-line of the particle, event, or observer.
The affine parameter determines where the particle is on
the world-line. The world line can be visualized if re-
stricted to two dimensions of space plus one dimension
of time (2+1 dimensional spacetime), as shown in Fig.1.
The line is surrounded by a light cone with a radius that
represents the maximum distance light could travel in
the elapsed time measured from the base of the cone. No
world-line can escape its own light cone, and all events
outside the light-cone are causally disconnected from the
world-line.

Consider a chicken hatching from an egg being ob-
served from many different IRFs. Every reference must
agree on one reality for the chicken: the reality of the
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FIG. 1: Time evolves upwards. A particle moves along the
world line in through 2+1 spacetime. This is seen as an move-
ment in the x-y plane. The light cone shows the distance light
can travel in the x-y plane from time t0 to t. The top of the
cone has been projected onto the x-y plane with dashed gray
lines.

chicken must be sequential and causal. (Here I ne-
glect the possibility of time travel until such concepts
can be understood in greater detail.) This implies that
there is some quantifiable interval that all observers must
agree upon regardless of their reference frame. This in-
variant interval is the proper “wristwatch” aging of the
chicken and is calculated by each observer in each ref-
erence frame. The invariant interval is defined by the
relativistic dot product of two 4-vectors. The dot prod-
uct is determined by the metric,

η =





1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



 ,

an operator that determines how space is measured. The
relativistic dot product is then

τ2 = ηX ◦X.

For spacetime in special relativity this interval is simple
and unchanging,

τ2 = t2 − x2 − y2 − z2. (1)

It is useful to consider the implications of 4-vector veloc-
ity and momentum. The 4-velocity is found by dividing
by the proper time τ

V α =





dt[λ]/dτ
dx[λ]/dτ
dy[λ]/dτ
dz[λ]/dτ



 =





γ
γvx

γvy

γvz



 .
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The 4-momentum is 4-velocity multiplied by the mass m

Pα =





γm
γmvx

γmvy

γmvz



 .

The invariant quantity of the 4-momentum is mass, pre-
serving the conservation of mass from Newtonian me-
chanics. The first component of the 4-momentum is the
total energy. This is apparent in the Newtonian approx-
imation to the first component:

γm = m

(
1−

(v

c

)2
)−1/2

= m

(
1 +

v2

c2

)

= mc2 +
1
2
mv2, (2)

where the SI units have been inserted for clarity. The
second term of Eq.2 is the kinetic energy and the first
term is the energy of the mass. Therefore, E = mc2 for
objects at rest.

Gravity invalidates the idea of a non-accelerating iner-
tial reference frame. Objects in free fall around a large
mass do not feel a force yet are subject to acceleration.
Inertial motion in a gravitational field is an acceleration
rather than an unchanging velocity. Special relativity as-
sumes that every inertial reference frame has a constant
velocity with respect to the global reference frame. Near
large massive objects there will always exist some point
in any reference frame that is subject to acceleration, un-
less we assume a spacetime that is locally free of all mass.
This is to assume a special relativity, and hence the name
of the prior theory.

Einstein proposed the architecture of curved spacetime
to describe the curving world-lines of inertial reference
frames. In technical terms, the world-lines of IRFs are
always parallel in special relativity. In general relativ-
ity the world-lines of IRFs follow the geodesics of the
curved spacetime. The geodesics are both the straightest
curves between two points and the curves with station-
ary length. Acceleration causes geodesics to diverge and
converge.

The description of curved spacetime is formulated
mathematically with tensor equations. Tensors are col-
lections of values and equations organized by indices. A
tensor of rank n is a collection of Dn components where
D is the dimension of the tensor. All general relativity
has a 4-component dimension representative of the 3 +
1 dimensions of spacetime. For example, a 4-vector is a
rank one tensor in 4 dimensions.

The addition of mass will change the invariant space-
time interval. Where space and time were given equal
footing by the metric of special relativity, they must be
generalized to account for inertial acceleration. Space-
time curvature specifies the metric, and the metric gov-

TABLE I: The Stress Energy Momentum Tensor with com-
ponent parts. p stands for pressure and S for shear.

Energy Density Ex Flux Ey Flux Ez Flux

Px Density px Sx in xz plane Sx in xy plane

Py Density Sy in yz plane py Sy in xy plane

Pz Density Sz in yz plane Sz in xz plane pz

erns the warp of 4-vector components In general relativ-
ity, the invariant interval is defined by the equation

τ2 = gαβXαXβ ,

where g is the metric, a rank 2 tensor. With an arbitrary
metric it is possible to calculate the invariant interval of
any inertial reference frame. Alternately, one can think
of the metric as specifying the curvature of spacetime and
hence the mass distribution.

The connection Γ determines the geodesics of curved
spacetime. The connection is defined by the derivatives
of the metric, symbolically Γ ∼ ∂g.

In order to quantify exactly the type of curvature we
need for physical representation of spacetime, we must
consider the source of the curvature. From special rel-
ativity E = mc2 and therefore all forms of energy will
gravitate. Energy in general relativity is embodied by
the 4-momentum. We must define the curvature in terms
of the 4-momentum density over the surface area of 4-
dimensional spacetime. This is in close analogy to de-
riving acceleration from gravitational field flux due to
mass in newtonian theory. Just as gravitational field flux
determines acceleration in Newtonian theory, surface 4-
momentum density determines curvature in general rel-
ativity. The surfaces in 4 dimensions are 3 volumes, and
therefore we must consider the 4-momentum density for
each 3D volume of spacetime. We define d3Vi to be the
3D surface for the specified dimension i of the 4-vector
X. For example, d3Vt = dxdydz is the 3D volume in the
time dimension. With this convention we can define the
components of the stress energy momentum tensor

Tµν =
dPµ

d3Vν
, (3)

Tµν =





dE
dxdydz

dE
dydzdt

dE
dxdzdt

dE
dxdydt

dP x

dxdydz
dP x

dydzdt
dP x

dxdzdt
dP x

dxdydt
dP y

dxdydz
dP y

dydzdt
dP y

dxdzdt
dP y

dxdydt
dP z

dxdydz
dP z

dydzdt
dP z

dxdzdt
dP z

dxdydt




. (4)

The stress energy momentum tensor (SEM) has the
general form given in Table I.

The SEM tensor, Tνµ, is a rank 2 symmetric tensor
that determines the Einstein tensor. The Einstein ten-
sor describes the curvature of spacetime and satisfies the
condition

Gµν = κTµν . (5)
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Equation 5 is known as the Einstein field equation.
Symbolically, the field equations can be written as the

dependencies of the Einstein tensor set equal to the de-
pendencies of the SEM tensor: G ∼ ∂∂∂P ∼ T. It can be
shown that the Einstein tensor is symmetric. Therefore,
Eq.5 represents 10 independent coupled nonlinear differ-
ential equations that must be solved for the 4 unknown
components of the 4-momentum. Einstein spoke of the
SEM tensor with great confidence in its physical ground-
work. However, he was unsure about his final conception
of the curvature. Since the 1920’s other formulations of
the curvature have been attempted with limited success.

III. PROGRAM DESIGN

In order to visualize spacetime, I chose to specify the
metric and solve for the stress energy momentum ten-
sor and the geodesics. This involved creating the en-
tire architecture of general relativity on a program plat-
form with symbolic algebra. Mathematica was a natural
choice because of its extensive graphing and integrating
capabilities and symbolic algebra manipulation. The de-
sign philosophy of the program was to create a diverse
group of images that would elucidate the dynamics of
the curved spacetime specified by a user defined metric.
This entailed allowing the user to visualize any plane
in 3 dimensional space and view both the curve of the
geodesics in conjunction with a given stress energy mo-
mentum component density plot.

Once the metric has been entered, the notebook has
the ability to create density plots of both the metric
and the stress energy momentum tensor components. A
Mathematica density plot creates a plot of a given func-
tion colored according to its magnitude at any given
point. The plots are created in a grid representing the
individual components of the metric. This allows the
user to witness the stress energy tensor magnitude of the
shear, pressure, energy flux, momentum flux, and total
energy components over the specified plane in three di-
mensional space. The user can also view the magnitude
of the warping of spacetime for each component of the
metric. These pictures represent a powerful tool for un-
derstanding the dynamics of the Einstein field equations.

The geodesics provide a way of visualizing how space
is curving. The NDSolve algorithm is used to integrate
the four coupled nonlinear differential equations that de-
termined the geodesics of the light rays. Setting the ap-
propriate starting position and velocity 4-vectors equal
to the zero affine parameter value develops initial con-
ditions for the light rays. These initial conditions are
the unified with the geodesic equations of motion and
fed into NDSolve. Interpolating functions are returned
as solutions.

The final output of the program is an ultimate syn-
thesis between the representational styles, a combina-
tion of both the stress energy momentum tensor and the
geodesics. This combination graph allows the user to

see the direct result of the desired stress energy momen-
tum component on the curving of spacetime. With this
output, the functionality of the visualization has been
pushed to the limits of the notebook. The images take a
very long time to render.

IV. EXPLORING METRIC PERTURBATIONS

It is helpful to begin exploration with simple metrics
and work towards the visualization of more complicated
perturbations. We will begin with a flat spacetime met-
ric to familiarize the reader with the visualizations of the
geodesics, T, and G. We will progress to a discrete per-
turbation that is forced to zero outside some boundary.
Finally, we will consider the implications of a metric that
has a Gaussian distribution.

We are viewing a cross section in the equatorial plane
for all images that follow. However, it is possible to view
a cross section through any plane the user would like to
specify. The density plots depict the x-y plane with the
x axis on the bottom of the plot, y axis on the left hand
side, and the origin in the center. Flat spacetime has the
metric

gαβ =





1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




.

In the flat spacetime visualization shown in Fig.2 Box A,
the metric is displayed as an array of component plots
corresponding to the matrix representation above. The
blue represents a positive value of 1 everywhere in space,
the red represents a negative 1, and green represents 0.
Likewise, in flat spacetime there is no source of curvature
and therefore the stress energy momentum tensor T = 0
everywhere, as shown in Fig.2 Box A. The stress energy
momentum plot is shown in exactly the same fashion as
the metric plot.

Each component density plot of the metrics are scaled
according to a single color palette that spans the entire
range of values of all plots combined. We can refer to this
as a global color palette that allows direct and mean-
ingful comparison of each of the components. In most
situations with the density plots of the stress energy mo-
mentum tensor, it is beneficial to scale each plot indi-
vidually. If there is a great difference in the magnitude
of the components then one component plot could com-
pletely dominate the scaling and eliminate the details
of the other component plots. The scaling of the color
function remains a problem for future developers of the
program. Problems with color scaling will be addressed
as they arise for different visualizations.

The geodesic plots graph the path of photons in either
a dashed or colored line. The photons begin their paths
of to the left of the picture as indicated by the arrow
in Fig.2 Box B. The plots are in the equatorial plane.



5

Metric Stress Energy Momentum Tensor
Box A

Box B Box C

Flat Spacetime

Color Geodesic Plot Dashed Geodesic Plot

1-1 0 1

FIG. 2: In Box A the diagonal elements are negative when
red and positive when blue. The stress energy tensor is zero
everywhere. Coordinates have been added in the top right
box of the stress energy momentum to indicate direction for
each individual plot. Box B, and C show straight geodesics
as expected. There is no time warp because the colors and
dashes are all exactly in phase as we expect in flat spacetime.

Bending of the lines indicates warping of spacetime. As
the affine parameter increases, the photons move with
exactly the same time position in spacetime. When some
of the photons pass through a given perturbation their
time position will be altered. The altered photons will
have gone through a slowing or speeding of time. The
colors and dashes are plotted using the time parameter.
Therefore, a change in the time positions of the photons
will be seen as a misalignment of the dashes or colors
relative to the straight line shown in both Fig.2 Boxes
B and C, and Fig.4 Boxes A and B. If no perturbation
exists then the colors and dashes should be completely in
line vertically, as shown in Fig.2. Box B. The dark gray
boxes represent the perturbation of the discrete function
to be considered next, and are placed there for future
reference.

We now add a perturbation into the metric of the form

gαβ =





1− δg 0 0 0
0 −1 + δg 0 0
0 0 −1 + 2δg 0
0 0 0 −1 + 3δg




, (6)

where δg[x, y, z] = κ sin2[x] sin2[y] sin2[z] and κ is a scal-
ing constant. In Fig. 3 Box A the slight perturbation
in the metric visible as a discoloration along the diago-
nal elements of the density plot matrix. Next, notice the
increased complexity and off diagonal terms of the covari-
ant T. These terms are highly complex. I would expect
to find something more uniform for such a simple pertur-
bation, but what we observe is a complex petal formation
of negative and positive energy. Apparently, the Einstein
field equations demand elaborate constructions of energy
to create a discrete gravitational field. Also, even though
our metric is smooth to the first derivative, T appears to
cut off at the edges of the perturbation. This highlights
the highly dynamic and non-linear behavior of the field
equations. I suspect that any discontinuity in any order
derivative will produce some form of cutoff in the stress
energy momentum.

The geodesic plots are shown in Fig.4. Look closely
at the divergence of the light rays in comparison to the
artificially drawn straight lines. Apparently they remain
unaffected when passing through the front portion of the
perturbation, but are immediately caused to diverge in
the latter half. Comparing Fig.4 Box B and Fig.3 Box
B indicates a negative energy and shear in the spatial
stress causes the divergence of the geodesics. Further-
more, there appears to be a slight bow in the dashed
plot, indicating that time has sped up for the photons
passing through the perturbation. These two effects are
both hallmarks of antigravity and exotic matter. Ex-
otic matter is matter with a total energy density less
than zero or energy less than the addition of all the pres-
sures along the diagonal of the stress energy momentum
tensor. Physically, no substance has these properties,
though electromagnetic fields come close. A material of
this kind would allow for time machines and faster than
light speed travel. The behavior of the geodesics is of the
type we would expect given the negative components in
T. Hence, this is an example of a non-physical metric.

The Gaussian distribution represents the most com-
plicated case of this brief study. The distribution does
not truncate quickly, but exponentially decays at a rate
quick enough to allow for a very good approximation to
flat spacetime at far distances. This allows for the use of
the same program architecture for the geodesic light rays.
Before we consider the images, note that because gravity
is a 1/r2 field law, we should expect that the metric com-
ponents of any physically realizable mass concentration
should behave like some kind of binomial or exponential
function. We can use this program to test whether a
Gaussian distribution to the metric satisfies the function
described by real matter.
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FIG. 3: In Box B the stress energy tensor is complicated with
an alternating petal pattern of negative and positive energy.
The scale is not fixed from component to component so direct
comparison is invalid. The color palette wraps, so multiple
colors indicate increasing or decreasing energy density, not
oscillating energy density. The zero value for each plot can
be found by examining the color outside the perturbation.

The metric perturbation has the form of Eq. 6, with

δg[x, y, z] = κ exp
[
−((x2 + y2 + z2)− µ)2

2σ2

]
.

The perturbation can be seen as a faint discoloration at
the origin from the flat spacetime metric. The complex
petal formation in the discrete T reappears here with
a smooth continuity. However, the total energy den-
sity changes dramatically between the discrete and gaus-
sian cases. This is an interesting effect. If we compare
the discrete and Gaussian perturbations, what we find is
that the field equations produce roughly the same type of
stress energy momentum fields. This may indicate that
what matters is the shape of the perturbation rather than
the way in which it drops to zero. This may imply that
physically realizable solutions to the Einstein field equa-
tions define a characteristic curvature shape for all mat-
ter. Rather than any range of curvature, there is only
one specific style of curvature that mass can produce.

The geodesic plots of Fig.6 show a much smoother di-
vergence of the light rays. The circle gives a rough idea of

Discretely Perturbed Spacetime
Color Geodesic Plot

Dashed Geodesic Plot

Box A

Box B

FIG. 4: The perturbance is represented by the gray box. The
geodesics only diverge in the latter half of the perturbance.
A black and red line has been added to the color and dashed
images, respectively, to show the time shift.

where the perturbation is. The perturbation exists every-
where so it cannot be strictly encompassed by a border.
Again, we observe the effects of antigravity as seen in the
divergence of the geodesics.

V. FUTURE WORK

Future work could be taken in any number of direc-
tions. The visualization of the curved spacetime allows
human intuition to guide the exploration of the Einstein
field equations. Most extensions of the project would
use the notebook to validate some external computa-
tions or guide the research to a meaningful computational
regime. Mathematica is too slow to extensively work with
the field equations. Notebooks use interpreted code, a
much slower compiler design that limits massive amounts
of computation needed for gravity research. However,
Mathematica has the ability to explore a diverse range
of metrics with trivial recoding. Other code platforms
would require extensive recoding for each dramatically
different metric.

There exist numerous possibilities to study the nonlin-
ear dynamics of the field equations, perhaps leading to
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Gaussian Metric
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FIG. 5: In Box B the stress energy tensor is complicated with
an alternating petal pattern of negative and positive energy
like that seen in the discrete case. The color scale is not global
as in the discrete case. White color represents a magnitude
that is too large to be displayed by the color palette.

insightful dynamics of large gravitating objects. Math-
ematica computes the SEM tensor fairly easily. It may
be possible to examine the dependencies of the SEM ten-
sor by creating movies of its dependence on a changing
metric.

The most advanced program for future work would in-
volve simulating the interaction between a large gravitat-
ing mass and a small metric perturbation. Since there is
no global time to parameterize the movement of the ob-
jects it is hard to say what sort of results would be valid.
Checking the evolution of the perturbation will require a
number of advanced and arcane mathematical tests. This
course of research seems extremely well suited to the type
of algebraic manipulation championed by Mathematica.

VI. CONCLUSION

The notebook is a novel way to explore the intricacies
of the general relativity. Given more time, it would be
possible to take the research in a number of different di-
rections. We have demonstrated that common intuition
is not a very good guide to developing solutions for the

Gaussian Perturbed Spacetime
Color Geodesic Plot

Dashed Geodesic Plot

Box A

Box B

FIG. 6: Notice that the geodesics begin to diverge before they
have passed through the largest part of the perturbance.

field equations. Historically, thought experiments have
played an important role in the development of field the-
ories. Only recently have field theories reached the point
that human are no longer capable of understanding their
complex dynamics. This simulation moves in a direction
to restore the ability of the experimenter to actively think
about general relativity.
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