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We attempt to shed light on the solar dynamo problem by idealizing the sun as a simple system
of Faraday disk dynamos. We first investigate Bullard’s simple single-disk system, showing that it
is not capable of magnetic reversal. We then move to Rikitake’s system of coupled Bullard dynamos
and explore its characteristic chaotic current reversal. Afterwards, we address the characteristics of
a damped Rikitake system, and show that we can regain at least periodic current-reversals. Finally,
we discuss the possibility of modifying the Rikitake dynamo into a geometry more similar to that of
the sun. To do this, we begin by moving the system coaxial, which unfortunately eliminates current
reversal. We then derive a formula for calculating the mutual inductance for an arbitrary system,
and explicitly calculate the mutual inductance for a disk and wire loop.

I. INTRODUCTION

Dynamos, devices that convert mechanical energy to an
electrical current, are very important to today’s world.
Primarily used for power generation, they keep our soci-
ety running. The type of dynamo this paper focuses on,
however, is not the standard power-generating dynamo.
Rather, we investigate a special type of system, the self-
exciting dynamo. Self-exciting dynamos can, with only
minute external magnetic fields, take mechanical energy
and convert it to large currents and magnetic field. The
importance of these dynamos is primarily scholarly, since
common dynamos such as power generators are not self-
exciting. However, the planets and sun do exhibit sponta-
neous and self-generated magnetic field reversals, which
are thought to be caused by self-exciting dynamo action.

Contemporary solar physicists working on the solar dy-
namo problem use as many observed features of the sun
in their models as can be computationally afforded in an
effort to match existing data[1]. However, the actual so-
lar features and mechanisms that cause the sun’s polarity
reversal are still not understood. Rather than attacking
the problem magnetohydrodynamically and trying to de-
velop a realistic model for the solar dynamo, we will focus
on a proof-of-concept toy model using Faraday disks.

Simple models of this kind were first proposed for use
in the geodynamo problem, beginning with Sir Edward
Bullard in 1955[2]. Bullard’s model is a single-disk,
single-wire system, which has the advantage of being
straightforward to analyze and was also the backbone of
more complex models, the first of which was constructed
by Tsuneji Rikitake in 1958[3]. Rikitake’s model con-
tained two Bullard dynamos coupled together.

A number of additional modifications were made to the
Rikitake system, including the recent study by Dmitry
Volobuev in 2006 that compares aspects of simple dy-
namo systems to various aspects of solar activity[4].
While he does suggest a mapping of the simple dynamo
system onto the sun’s zones, this process is not very re-
fined. We make this mapping more explicit by investi-
gating the results of changing the geometries of the disk

Figure 1: Bullard’s simple homopolar disk dynamo. The disk
has a radius a, moment of inertia I, and angular velocity ω.
Also, a constant torque τext is applied to spin the disk[2].

dynamo systems in an attempt to make a more convinc-
ing case for its similarity to the solar cycle.

II. BULLARD’S DYNAMO

The Bullard Dynamo, shown in figure 1, is self-exciting,
meaning that as the angular velocity of the disk increases,
it eventually reaches a critical value for which electrical
inactivity becomes a non-stable equilibrium solution[2].
Thus, any stray magnetic field will cause the system to
start producing both magnetic field and current. The
set of coupled differential equations that describes the
motion of the Bullard system is[2]

ωMI = L
dI

dt
+RI,

I dω
dt

= τext −MI2, (1)

where 2πM is the mutual inductance between the disk
and wire, L is the self inductance of the wire, ω is the
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Figure 2: Numerical integration of Bullard’s single disk sys-
tem, plotted in arbitrary units. Pictured as a solid red curve is
the current with time, and as a dashed blue curve is the angu-
lar velocity with time. The initial parameters are ω0 = 2 and
I = 1, while the constants are M = L = I = τext = R = 1,
for simplicity. The system is approximately periodic, but does
display nonuniform current and angular velocity, despite a
constant external applied torque.

angular velocity of the disk, I is the current running
through the system, I is the rotational inertia of the
disk, and τext is the externally applied torque driving
the disk. We cannot analytically solve this system, but
we can study some special cases, and it can be read-
ily integrated numerically. Steady state solutions to the
system must have I ≡ I0 and ω ≡ ω0, or both the current
and angular velocity constant. Thus, considering steady
states, our system of equations simplifies to

ω0MI0 = 0 +RI0,

0 = τext −M (I0)
2
. (2)

So, we now have a simple algebraic system, and we find
ω0 = R/M and I0 =

√
τext/M .

Next, we numerically integrate the system to observe how
a more general solution behaves. The results of this inte-
gration, shown in figure 2, display a general trend of the
system, that the current never changes sign, and so the
magnetic field never reverses.

To validate this assertion, we look at the phase-space
plot shown in figure 3. We find a closed orbit, as we
would expect for a periodic solution. Further, we notice
that there exists a separatrix between the positive and
negative current regions, explaining why the current
never changes signs. Unfortunately, this means that the
Bullard model can never explain the magnetic reversal
of the Sun.
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Figure 3: The same numerical integration of Bullard’s single
disk system done in figure 2, viewed in phase-space with ar-
bitrary units. The vector field shown represents the initial
values of the time derivatives of angular velocity and current,
and the curve is the actual orbit taken by the system in figure
3. Note that there is a clear separatrix between the positive
and negative current regimes, which prevents the current from
changing signs.
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Figure 4: Rikitake’s system of coupled disks. Each disk has a
separate (and possibly unequal) rotational inertia I, applied
external torque τext, mutual inductance M , and resistance
R. They are each rotating at angular velocity ω, and have
the current I. The quantities that apply to the first disk are
denoted with a subscript “1”, and the quantities pertinent to
the second disk have a subscript “2” [5].

III. RIKITAKE’S DYNAMO

Rikitake’s system, pictured in figure 4, consists of two
Bullard dynamos coupled together such that the wire of
one disk is wrapped around the other. The equations of
motion are[5]
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ω1M1I2 = L1
dI1
dt

+R1I1,

ω2M2I1 = L2
dI2
dt

+R2I2,

I1
dω1

dt
= τ1 −M1I1I2,

I2
dω2

dt
= τ2 −M2I1I2. (3)

Similar to the equations of motion for the Bullard system,
these equations are also nonlinear and cannot be solved
exactly. Thus, we resort to numerical methods.

We integrate the Rikitake equations to obtain the solu-
tions shown in figure 5, which exhibits current reversals.
Besides just current reversal, the phase-space plots in fig-
ure 6 show that the orbits do not close, and so the system
is chaotic.

The sun is thought to exhibit such chaotic reversals of
magnetic polarity[6], so the Rikitake system is much more
likely to be a good candidate for a toy model for the sun
than the Bullard dynamo. Unfortunately, two coupled
disk dynamos do not resemble the spherical geometry
of the sun, and frictional forces, as we will see in the
next section, tend to decrease the chaotic behavior of the
system, presenting another problem.

IV. HIDE’S MODIFICATION

In 1995, Raymond Hide found a disturbing problem with
the Rikitake dynamo, which dramatically impacted its
feasibility as a physical model[7]. In an effort to make
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Figure 5: Numerical integration of the Rikitake System, plot-
ted with arbitrary units. The solid red curve is I1, and the
dashed blue curve is I2. The system starts with the initial
conditions I1(0) = 1, I2(0) = −3, ω1(0) = 4, and ω2(0) = −2.
Note that as in the Bullard integration, all the constants were
set to unity for simplicity, and so the units are arbitrary.
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Figure 6: Phase-space plot of the first disk in the numerical
integration done in figure 5, plotted with arbitrary units. The
solid red curve is the first disk system, and the dashed blue
curve is the second. The arbitrary time runs from t = 0 to
t = 600.
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Figure 7: Numerical integration of the Hide system, plotted in
arbitrary units. The solid red curve is the current in the first
disk, and the dashed blue curve is the current in the second.
The initial parameters were the same as in figure 5, and the
damping terms were k1 = k2 = 0.06. The system does exhibit
chaotic reversals initially, but oscillations are quickly damped
out.

the system more physical, Hide included damping terms
in the two Rikitake torque equations. Hide’s equations
were

ω1M1I2 = L1
dI1
dt

+R1I1,

ω2M2I1 = L2
dI2
dt

+R2I2,

I1
dω1

dt
= τ1 −M1I1I2 − k1ω1,

I2
dω2

dt
= τ2 −M2I1I2 − k2ω2, (4)
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Figure 8: Numerical integration of the Hide system with
asymmetric torques, plotted in arbitrary units. The solid red
curve is the current in the first disk, and the dashed blue curve
is the current in the second. The initial parameters were the
same as in figure 7, except that τ2 = 3 rather than unity.

which are identical to the Rikitake equations except for
the damping terms. When integrated numerically, these
yield substantially different results from the Rikitake
equations, as shown in figure 7. From this plot, we see
that the system spends a short amount of time oscillat-
ing and then decays to a steady-state solution. This has
problematic consequences for the Rikitake system being
used as a model for a chaotically reversing system such
as the sun, since most dynamical models would have to
include at least a small damping term.

However, we found that inserting an asymmetry into the
torques caused the system to once again exhibit rever-
sals, as shown in figure 8. Unfortunately, the system is
periodic rather than chaotic, so we have overcome the
damping effect but at the cost of some of the chaotic
tendencies of system.

V. CHANGING THE GEOMETRY

We now turn our attention to altering the geometry of
the Rikitake system to make a more physically reason-
able model for the sun. To do this, we will first move
the disks to be coaxial. This will complicate our work
substantially, because now each of the disks and wire
loops can potentially interact with every other element
through a plethora of mutual inductances. After that,
we will begin laying the framework for more general ge-
ometries. Until now, we have been simply setting all the
mutual inductance terms to unity to observe solutions
of the resulting differential equations qualitatively. How-
ever, now we must calculate them directly so that altering
the geometry of the system will have a physically realistic
impact on its behavior.
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Figure 9: Numerical integration of the coaxial system, plotted
in arbitrary units. The solid red curve is I13, and the dashed
blue curve is I24. The initial conditions were I13 = 1, I24 =
−3, ω2 = −2, and ω3 = 2. The constants were all set to
unity. The system does exhibit chaotic reversals initially, but
after a short time all current fluctuations are constrained to
be negative.

A. The Coaxial geometry

We imagine moving the two disks over top of each other,
as shown in figure 10. The original Rikitake equations
only take into account the mutual inductance between
the first disk and second wire and the second disk and
first wire. However, now each element is acted on by
three other elements. To start, we rewrite the Rikitake
equations (eq. 3) in a more suggestive form using the
labeling scheme in figure 10. They are

ω3M34I24 = L1
dI13
dt

+R13I13,

ω2M12I13 = L4
dI24
dt

+R24I24,

I2
dω2

dt
= τ2 −M12I13I24,

I3
dω3

dt
= τ3 −M34I13I24. (5)

Loop 1

Disk 2

Disk 3

Loop 4

Figure 10: A coaxial version of the Rikitake dynamo. Note
that the two axes do not touch, so the only difference between
this and the Rikitake system is the two disks’ proximity to
each other.
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Now, we add the new interactions due to the mutual
inductances of all the components. By symmetry of the
system, we extend the Rikitake equations to be

L1
dI13
dt

+R13I13 = ω3M13I13 + ω3M23I24 + ω3M34I24,

L4
dI24
dt

+R24I24 = ω2M12I13 + ω2M23I13 + ω2M24I24,

I2
dω2

dt
= τ2 −M12I13I24 −M23I13I24

−M24I24I24,

I3
dω3

dt
= τ3 −M34I13I24 −M23I13I24

−M13I13I13. (6)

We numerically integrate these equations. Sample results
from this integration are shown in figure 9. Unfortu-
nately, the system shows no apparent sustained chaotic
current reversals. At first, some reversals are present,
but the system quickly settles into periodic oscillation.
Thus far, we have not found a suitable set of parameters
to attain reversals, as we could in the Hide dynamo. To
proceed further, we need to alter the system in some way
by using a different geometry. However, to improve our
results, as well as making them more physically realistic,
we need a better grasp on the mutual inductance terms
appearing in our equations.

B. Mutual inductance

Until now, we have been assuming a mutual inductance
for a given system and investigating the properties of the

resulting differential equations. However, to accurately
gauge the effectiveness of different geometries, we need a
method for calculating it explicitly. Our mutual induc-
tance 2πM is[8]

2πM :=
Φ
I

=
1
I

∫
a

~B · d~a, (7)

where we integrate over an area a. But we know by the
Biot-Savart law that

~B = µ0

∮
l

d~l × û

4πu2
, (8)

where we integrate around the closed loop l, and ~u runs
from source point to field point. Thus, in general, our
mutual inductance is

2πM =
µ0

4π

∫
a

∮
l

d~l × û

u2
· d~a. (9)

We now consider a special case especially important to
the dynamo problem: an infinitesimally thin, parallel
disk and wire loop, separated by distance h. We take
the radius of the wire loop to be R and the radius of the
disk to be R0. We pick our origin to be the center of the
disk, and we use polar cylindrical coordinates, letting a
point in the disk be located by the coordinates ρ, φ, and
z = 0, and a point in the loop be located by ρ = R, φ′,
and z = −h. Through direct computation, we find

2πM =
µ0

4π

∫ 2π

φ=0

∫ 2π

φ′=0

∫ R0

ρ=0

ρRdφdφ′dρ (−ρ cos(φ− φ′) +R)

(ρ2 +R2 − 2Rρ cos(φ− φ′) + h2)3/2
,

=
Rµ0

4π

∫ 2π

φ=0

∫ 2π

φ′=0

∫ R0/R

ψ=0

dφdφ′dψ
ψ (1− ψ cos(φ− φ′))

(ψ2 +−2ψ cos(φ− φ′) + (h/R)2)3/2
, (10)

where we have introduced the dimensionless parameter
ψ := ρ/R.

Now that we can readily compute the mutual inductance
for a system of two disks, we could conceivably change
the geometry of the system and reflect the change math-
ematically in our equations of motion. However, to pro-
vide a complete physical description of the system, we
also need the self inductances of the components. Unfor-
tunately, we were not able to perform the self-inductance
calculations, and we leave their computation for future

work.

VI. DISCUSSION AND FUTURE WORK

We began by briefly reviewing the solar dynamo prob-
lem, and we noted that systems of Faraday disk dynamos
might be able to qualitatively model some features of the
sun. We showed that Bullard’s dynamo was inadequate
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as a model of the sun, since the solar dynamo reverses
polarity chaotically.

We then noted that Rikitake’s model does exhibit the
chaotic magnetic reversals we need to model the sun.
However, Hide provided a physical objection for the va-
lidity of the Rikitake system as a model. We addressed
this concern, and showed that we could force current
reversals in a damped Rikitake system by making the
torques driving the disks unequal, but in doing so we
lost the chaotic nature of the reversals.

Next, we attempted to change the geometry of the system
to strengthen the analogy between our system and the
solar dynamo. To do this, we brought the two disks of
the Rikitake system into coaxial alignment. We worked
out the new equations of motion for this system, and
numerically integrated them.

The results indicated that the system settled into oscil-
latory but non-reversing currents. To understand this
more, we would have to alter the geometry of the sys-
tem in an exact way. To facilitate this, we worked out
the mutual inductance for an arbitrary system, and we

solved a specific example of a parallel disk and wire loop.

There is much left to be done on this project. Stability
calculations could be performed on the various models.
This would address whether or not the coaxial system
truly will never reverse. Further, the mutual inductance
calculation should be applied to the models to get a more
physical sense their behavior, rather than using arbitrary
mutual inductances.

Also, the self-induction of the loops still needs to be cal-
culated to complete a full model. Finally, once the mu-
tual and self inductances are known and applied, new
geometries such as cylinders and spheres could be at-
tempted, which would bear a much closer geometric re-
semblance to the sun.
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