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An AC voltage was used in conjunction with a piezoelectric material 
consisting of lead, titanium, and zirconium to investigate the resonant 
mechanical frequencies and patterns of the piezoelectric sample.  Both 
longitudinal and flexural oscillatory modes were examined.  Resonant 
frequencies were found at ~42.1 x 103 rad./s, ~96.1 x 103 rad./s, and 
~135.7 x 103 rad./s.  These resonant frequencies correspond to the first 
flexural mode, second flexural mode, and first longitudinal mode 
respectively. Further investigation is needed to verify the model being 
used for the overall resonant frequencies.  However, this model enabled 
the speed of sound in the piezoelectric sample to be determined as (3291 ± 
6) m/s.  In addition, two methods were used in modeling a particular 
resonance in greater detail.  Analyzing the amplitude and phase shift of 
oscillation yielded a resonant frequency as well as damping coefficient 
which correspond to a Q factor of (25.30 ± 0.13). 
   
 

INTRODUCTION 
 
 The piezoelectric effect was discovered 
by Pierre and Jacque Curie in 1880.  Electric 
polarization, and thus a potential difference, is 
created when mechanical stress is placed upon a 
piezoelectric sample.  This is the direct 
piezoelectric effect as opposed to the converse 
piezoelectric effect, which is the creation of 
strain on a sample when a potential difference is 
created across the sample.  The Curies 
eventually discovered that the piezoelectric 
coefficient for a quartz crystal is the same for 
both the direct and converse piezoelectric 
effects1. 
 
THEORY 
 
 Piezoelectricity is simply the means by 
which we can examine the mechanical 
resonance of a piezoelectric sample.  The 
resonance relevant in this experiment is derived 
from the differential equation of a forced, 
damped harmonic oscillator 
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where β is the damping coefficient, ω0 is the 
natural oscillating angular frequency, ω is the 
angular frequency, and A is proportional to the 
amplitude of the driving force.  The solution to 
this second order differential equation has two 
parts: a complementary and particular solution.  
The particular solution takes the form2 
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where δ is the phase angle between the driving 
angular frequency and oscillating angular 
frequency.  D is2 
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Oscillations near a resonance point will occur 
with much greater amplitude. 
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 The delay between the driving force and 
resulting motion is described by δ which is 
given by2 
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As frequency approaches resonance, the phase 
angle will approach π/2.  Equations 3 and 4 are 
the two ways in which resonance can be 
experimentally detected and measured. 
 The oscillations which lead to resonance 
can occur two ways in the rod.  Longitudinal 
modes are to waves which travel up and down 
the length of the rod as a series of compressions 
and rarefactions.  The frequencies of these 
modes can be given by3 

 

� 

fn = n
v

2L
   (5) 

 
where v is the speed of sound in the rod, L is the 
length of the rod, and n is 1, 2, 3, … . 
 The other mode of oscillation is flexural.  
These modes consist of the rod bending back 
and forth, with higher modes consisting of more 
nodes and antinodes.  The frequencies of these 
modes are given by3 
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where RG is the radius of gyration, and n is 1, 2, 
3, … .  The radius of gyration for a square rod 
with side length d is d/√12. 
 Even without any knowledge of the 
experimental setup, patterns in the resonant 
modes of the system can be determined with 
Equations 5 and 6.  Dividing the equation for 
longitudinal modes by itself yields 
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where n and m are positive integers and 
represent different order resonant longitudinal 
modes.  This same method can be employed 
with Equation 6 
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 Since both longitudinal and flexural 
oscillations take place in the sample, it’s 
important to be able to recognize their 
relationship 
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where n is the order of the longitudinal resonant 
mode and m is the order of the flexural resonant 
mode. 
 
EXPERIMENT   
 
 A simplified schematic of the 
experimental setup can be seen in Figure 4.  An 
HP33120A Waveform Generator outputted a 
signal ranging from 500 Hz to 25 kHz  (ω = 3.1 
x 103 rad./s to 157.1 x 103 rad./s) and 1.0 Vpp to 
4.0 Vpp.  Since this signal was insufficient to 
adequately drive the piezoelectric sample, it was 
applied to a Kepco BOP 500M, which amplified 
by a factor of approximately 50 at low 
frequencies.  At frequencies above 
approximately 1 kHz, the gain from the power 
amplifier rolled off.  To compensate, the peak-
to-peak voltage was increased at higher 
frequencies to ensure that the peak-to-peak 
voltage driving the piezoelectric sample was 
never below 30 Vpp.  The signal from the power 
amplifier was measured by a Textronix TDS 
2012 Oscilloscope, and was sent to the lead, 
titanium, zirconium piezoelectric sample.  The 
sample was rectangular and measured 76.5 ± 0.2 
mm by 9.6 ± 0.1 mm.  The sample formed the 
basis of a stack which rested on an air table.  
Above the piezoelectric sample lay a PCB Force 
Transducer.  The air table reduced mechanical 
noise.  
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Figure 1:  Simplified schematic of experimental 
setup. 
 The force transducer was capable of 
detecting forces via a piezoelectric, and thus 
was able to detect the strain of the piezoelectric 
sample.  The signal from the force transducer 
was sent to a PCB 484B10 where it was 
amplified before being sent to two Stanford 
Research Systems SR510 Lock-In Amplifiers 
(LIA).  The LIA also received the signal being 
output by the function generator as their 
reference inputs.  The LIA were capable of 
taking the reference signal from the function 
generator and looking for a signal with the same 
frequency in the signal from the force 
transducer.  When detecting the identical 
frequency in the force transducer, the amplitude 
of oscillation and phase angle were recorded.  
This information was displayed as components 
of the phase angle.  In order to measure both 
components of the phase angle simultaneously, 
two LIA were necessary. 
 To take data, the function generator 
output a sine wave at 500 Hz with an amplitude 
of 1 Vpp.  The frequency was increased in 
increments of 500 Hz to a maximum frequency 
of 25 kHz.  As the frequency was increased, the 
output of the power amplifier decreased.  
Therefore, the voltage outputted by the function 
generator was increased by 1 Vpp whenever 
there was less than 30 Vpp driving the 
piezoelectric.   
 This overall, low-resolution resonance 
curve of the piezoelectric sample was used to 
locate the resonant frequencies.  This data was 
then used to further investigate a resonant 

frequency at a higher resolution.  Frequency was 
increased by 100 Hz increments when taking 
this data. 
 
ANALYSIS AND INTERPRETATION 
 
 The overall amplitude resonance curve 
of the piezoelectric sample can be seen in Figure 
2.  Drastic increases in the amplitude of 
oscillations correspond to resonant frequencies 
at ~42.1 x 103 rad./s, ~96.1 x 103 rad./s, and 
~135.7 x 103 rad./s. 
 

 
Figure 2:  Amplitude resonance curve over a 
large range of frequencies. 
 
 Since Equations 7, 8 and 9 are in terms 
of frequency, not angular frequency, the 
discussion on resonant modes in the sample will 
be in terms of frequency. Thus, the three 
resonances in Figure 2 occur at ~6.7 kHz, ~15.3 
kHz, and ~21.6 kHz.  Equations 7, 8, and 9 can 
be used to determine resonant modes and also to 
predict resonant modes at higher frequencies. 
 Assuming that the ~15.3 kHz resonance 
is the second flexural mode, the other 
resonances can be determined.  The ~21.6 kHz 
resonance becomes the first longitudinal mode, 
and the ~6.7 kHz resonance becomes the first 
flexural mode. 
 
Mode Theoretical 

value (kHz) 
Experimental 
value (kHz) 

Flexural = 1 5.507 ~6.7 
Flexural = 2 (15.3) ~15.3 
Longitudinal = 1 21.510 ~21.6 
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Table 1:  Theoretical and experimental values 
for three observed resonances. 
 The speed of sound in the lead, titanium, 
and zirconium composite material can be 
determined from Equation 6 when the ~15.3 
kHz is assumed to be the second flexural mode.  
The speed of sound was determined to be (3291 
± 6) m/s.  However, this analysis is cursory 
without higher resolution data of the three 
resonances used. 
 When the stack was deconstructed to 
take physical measurements of the piezoelectric 
sample, a reconstruction of the stack did not 
produce similar resonance patterns as were 
initially present.  However, Figure 3 shows a 
detailed resonance curve which was not 
disturbed by the reconstruction of the stack. 

 
Figure 3:  Amplitude resonance curve. 
The amplitude resonance curve yielded values 
for ω0 of (131.5 ± 0.1) x 103 rad./s, β of (2.6 ± 
0.1) x 103 rad./s, and A of (839 ± 22) x 103 m/s2.  
The speed of sound in the sample is found to be 
(3202.1 ± 0.1) m/s. 
 The phase angle can also be used to 
determine where resonance occurs.  Equation 4 
describes the phase shift between the driving 
force and oscillations.  A resonant frequency 
can be found when the phase shift is π/2.  Figure 
10 shows the phase shift angle, δ, as a function 
of frequency.  Experimentally, a resonance may 
not occur at a phase shift of π/2 due to previous 
resonances shifting the phase difference 
between the driving frequency and oscillations. 
 Igor Pro 5.04b was used to plot and 
analyze this data, but had difficulty in 
comparing this data to Equation 4, which 
describes the shift in phase angle around a 

resonant point.  In order to analyze the phase 
shift data, it first had to be manipulated.  Every 
data point had π/2 added to it so that Igor would 
process the trig functions as they went to a 
different quadrant, which was a possible 
problem to fitting the data for analysis.  The 
tangent was then taken of Equation 4 which 
yielded 

� 

tan! =
2"#

"0

2 $" 2
=

Amp of 90oLIA

Amp of 0o  LIA
 (10) 

 

 
Figure 4:  Manipulated phase angle data fit for 
analysis. 
 
This analysis of the phase angle data gave ω0 to 
be (130.44 ± 0.01) x 103 rad./s and β to be (3.2 ± 
0.1) x 103 rad./s. 
 
CONCLUSION 
 
Resonance in a piezoelectric material was 
examined using the piezoelectric effect to 
induce mechanical oscillations. Resonant 
standing wave frequencies were found and 
modeled at ~42.1 x 103 rad./s, ~96.1 x 103 rad./s, 
and ~135.7 x 103 rad./s.  The model which best 
describes the ratios of the resonant frequencies 
has the resonance at ~135.7 x 103 rad./s 
corresponding to the first order longitudinal 
mode, the resonance at ~96.1 x 103 rad./s 
corresponding to the second order flexural 
mode, and the resonance at ~42.1 x 103 rad./s 
corresponding to the first order flexural mode.  
With this model or the resonant modes, the 
speed of sound in the material was found to be 
(3291 ± 6) m/s.  It’s possible to make further 
predictions as to where resonant modes should 
fall, and further investigation into the resonance 
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of the piezoelectric sample would surely involve 
checking to see if predictions for higher order 
resonant modes hold. 
 In addition, two methods were used in 
modeling a particular resonance in greater 
detail.  Analyzing the amplitude of oscillation 
yielded a resonance at (131.5 ± 0.1) x 103 rad./s 
with values for β, the damping coefficient, of 
(2.60 ± 0.10) x 103 rad./s and A, the force per 
mass coefficient, of (839.0 ± 21.6) x 103 m/s2.  
Analyzing the shift in phase angle yields a 
resonance at (130.44 ± 0.01) x 103 rad./s with a 
damping coefficient of (3.19 ± 0.06) x 103 
rad./s.  Both methods used to determine these 
values produced similar results.  However, they 
do not fall within each others’ error values. 
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