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When two spheres collide, compression waves propagate throughout in
every direction. To directly visualize the wave propagation through a
sphere, a computer simulation is created. Particles arranged on an
octagonal lattice are connected to each other with virtual springs,
representing intermolecular forces. The simulation propels the ball toward
a stationary object with some initial speed. During the collision with the
obstacle, compression waves propagate through the sphere in a manner
predicted by the theory. The compression wave propagation through the
ball is very similar to what would be expected in the collision of an elastic
spherical solid.

INTRODUCTION

Though there has not been a recognized
quantitative analysis of the collision of solid
spheres, there are qualitative theories, notably that
of B. F. Bayman. In his 1976 article, “Model of
the behavior of solid objects during collision”,
Bayman1 investigates the propagation of acoustic
waves during a collision between Hooke’s Law
springs, offering a quantitative explanation for the
conservation of energy between the springs.
Bayman also gives a proposed qualitative
description of the collision of two hard spheres,
which is investigated in this paper.

According to the proposed model, during
the collision of two hard spheres, an acoustic
wave is generated at the point of impact and
propagates through both spheres in all directions.
This compression wave reflects off the inner
surface of the sphere and continues without loss
of energy. These reflected waves will bring about
some relaxation of the initial compression waves,
eliminating the internal energy of the ball, and
thereby conserving its kinetic energy. This paper
attempts to give a qualitative explanation with
quantitative assistance. The wave equations for a
general sphere are found, and a possible
explanation for the conservation of kinetic energy
is given.

THEORY

In order to describe the compression
waves propagating through a material, it is
necessary to determine the equation of motion of
a particle in a general elastic material. During and

after a collision the internal forces of a solid
material are not at equilibrium. Rather, each
particle projects a force upon its neighbors. It is
these “internal forces”, or fint, that creates a wave
of compression. Feynman2 and Landau3 show that
the equation of motion through an elastic material
is

  

† 

f = l + m( )— — •
r u ( ) + m—2r u      (1),

where l and m are constants depending upon the
molecular structure of the material, u is a vector
describing the displacement of a particle located
in the region, and 

† 

— •—( ) = —2 is the Laplacian.
Essentially the vector u describes a vector field,
describing the displacements of all the particles
contained in the area A. Therefore, the vector u
can be equated to the sum of two vectors u1 and
u2, where

  

† 

— •
r u 1 = 0   and   — ¥

r u 2 = 0      (2).
These expressions can be substituted back into
equation (1).
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r
∂ 2 r u 1 +

r u 2( )
∂t 2 = l + m( )— — •

r u 2( ) + m—2 r u 1 +
r u 2( )      (3)

To eliminate u1, one can take the divergence of
Equation 3. The divergence operators function
only on u  and therefore can pass through the
constants and derivatives with respect to time.

  

† 

r
∂ 2(— •

r u 2)
∂t 2 = l + m( )—2 — •

r u 2( ) + m— •—2r u 2    (4)
Factoring out the divergence operator from the
equation gives
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Based upon the definition of u2 (the curl of u2 =
0), so the curl of the bracketed term is zero. Since
the divergence of the curl is zero, 

  

† 

— • — ¥
r 
b ( ) = 0 ,

the bracketed term is zero. Therefore, Equation 5
can be rewritten:

  

† 

—2r u 2 =
r

l + 2m( )
∂ 2r u 2
∂t 2     (6)

The term r / (l  + 2m) is the inverse square of the
speed of sound propagating through the elastic
material, cl. This is the longitudinal wave
equation, or compression equation. Because the
curl of u 2 is zero, there are no shear motions.
However, recall how this result arrived by taking
the divergence of Equation 3. Taking the curl of
Equation 3 produces a completely different
expression without u2. The resulting expression is
Equation 7.
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r
∂ 2 — ¥

r u 1( )
∂t 2 = m— ¥ —2 r u 1( )    (7)

Once again the curl operator can be factored out
of the equation:
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— ¥ r
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˚ 
˙ = 0     (8),

Much like the previous situation, the bracketed
term is zero.

  

† 

—2r u 1 =
r
m

∂ 2r u 1
∂t 2     (9)

Because the divergence of u1 is zero, u1 produces
no change in linear density as it propagates, and
thus describes a shear or transverse wave
equation. The transverse wave speed is ct

2 = m/r,
which is generally smaller than cl

2.
I will assume that compression waves,

consisting of a longitudinal and transverse wave,
travel outward from the point of impact on the
sphere’s surface. These wave pairs contain the
exact same energy, and propagate with the same
speed. If such an assumption is true, then it is
possible to describe these compression waves in
terms of their angle from a horizontal, in this case,
the equator. Because of the equality of all the
waves’ energy, the magnitude of the wave vector
can be assumed to be 1, which will reduce the
computational details.

As the angle of incidence (q) describing
each wave vector increases, the resulting angle
with respect to the base wave, b, changes from
positive interference to negative interference.
When the x  (horizontal) component of the
reflected compression wave vector is greater than
zero, the interference with the base wave is
positive, increasing the magnitude of the vector,

which signifies an increase in energy. Similarly,
the interference is negative when the x-component
of the reflection wave vector is less than zero and
the base wave loses energy. There is a very
interesting geometry present in the sphere. For
larger angles of incidence, the waves will reflect
off of the sphere multiple times before reaching
the base wave. Equation 10 displays the formula
used to find the limit angles.

  

† 

qn = 1-
1
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¯ 
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p
2

           (10)

n =1,2,3,4,5,L,•
n refers to the number of reflections a wave has
before it reaches the base wave. qn refers to the
angle limit for a certain number of reflections for
a wave. As the incident angle increases, the
number of reflections (always an integer)
increases as well. For example, the base wave
propagates with an incident angle of q = 0. This
implies that n = 0, according to Equation 10. This
is correct, as the base wave does not reflect.

The cosine of all the angles with respect to
the base wave are added. Recall that the
magnitudes of all the wave vectors are equal to 1,
implying that cos (f ) = X/1, using simple
trigonometry (where f  is an angle in a right
triangle). Using the geometric angle limits derived
from Equation 10, a new formula can be created
that calculates the total x component of all waves.
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= 0    (11)

X is the total horizontal component of the average
velocity vector. This implies that there is no x
component after all the waves come in contact
with the base and total relaxation has occurred.

SIMULATION

The simulation is a significantly modified
version of a program written by Dr. John Lindner.
Since the partial non-linear differential equations
describing the wave nature of the elastic solid are
probably impossible to solve analytically, the
actual motion of the particles in a sphere is
simulated, and the desired compression wave can
hopefully be seen.

The simulation consists of an array of
“particles” arranged on a rectangular grid. The
particles are connected to each other by virtual
springs, which represent the intermolecular forces
present between the particles of a solid. It is best
to consider these “particles” regions of multiple
particles, which allow a circle with a small
number of particles to demonstrate realistic
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behavior. Each particle is connected to its eight
surrounding neighbors, and reacts to their
displacement according to the intermolecular
forces. There are eight discrete forces
corresponding to each direction that are combined
into the total spring force.

† 

SpringForce =
1
2

k l
l2 - lmax

2( )
2   (12)

Here, k is the virtual spring constant or spring
stiffness, l refers to the displacement from the
equilibrium length, and lmax refers to the maximum
extended stretch of the spring. When two particles
are extended, they attract each other; when two
particles are compressed, they repel each other.
Equation 12 was specially derived to ensure that
when l is small, the spring force is linear
resembling the Hooke’s Law spring force, yet
when l is near lMax the force is infinite preventing
the particles from “breaking apart”. There is also a
viscosity present in springs, linearly dependent
upon velocity, which prevents the solid from
freely oscillating after a displacement. There is a
spring force and a spring viscosity for all eight
directions. The force constant and viscosity
constants for each virtual spring are arranged in a
two-dimensional array and are user selected.
However, this simulation is meant to capture the
properties of a circular (and hence spherical)
geometry. Therefore, a circular boundary is
created, outside of which the spring force
constants and the spring viscosities are set to zero,
effectively removing their presence from the
program.

There is also an obstacle placed in the path
of the ball, which repels the ball via a version of
the electrostatic force. The total spring, viscosity,
and obstacle (if applicable) forces for each
particle are added and that specific particle
displaces according to the total force it
experiences.  A random number generator iterates
through the array of spring force and spring
viscosity constants and assigns new random
constants. Because of these randomized spring
forces and viscosities, the ball is not at
equilibrium, and it shifts internally. It relaxes into
a new and forms distinct regions based upon the
assignment of the spring forces and viscosities.
These regions can be thought of as grain patterns
within an actual steel ball.   As the program
commences, the ball is given an initial speed in
the positive x direction (there is no initial vertical
velocity). With this initial velocity, it moves
towards the obstacle. When each particle reaches
the obstacle boundary the particles begin to slow
and change direction. However, the particles on

the other side of the ball are not experiencing the
obstacle force and therefore do not slow down.
This causes horizontal and vertical compression
around the point of impact, as the springs between
each particle compress. However, the springs then
apply extension forces upon each other, pushing
the atoms outward. This compression and
extension propagates from the point of impact to
the opposite side of the ball, simulating the
compression waves discussed in the theory
section.

RESULTS AND ANALYSIS

The simulation exhibits a direct
representation of the compression waves
propagating through the ball. At incredibly high
speeds, the ball will deform significantly both
horizontally and vertically upon impact with the
obstacle as seen in Figure 2.

FIG. 2: Notice the significant deformation of the ball. This
is due to unrealistic initial speeds.

The Collision simulation did show the
propagation of a compression wave from the point
of impact to the opposite side of the ball in a
manner predicted by the theory. This can be seen
in Figure 3. Therefore, the assumption that the
numerous compression waves propagate outward
in all directions from the impact point is most
likely true. The reflection and relaxation of the
compression waves is more difficult to perceive,
though was moderately visible.
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FIG. 3: The compression wave propagates outward from the
point of impact with the obstacle.
The simulation does require some fine-tuning,
especially in the speed of its operation. The most
substantial hindrance of the Collision simulation
is the presence of two time frames. Compression
waves passing through an object move much
faster than implied by the program. In steel, the
speed of sound is 5100 m/s. Since the ball shifts
toward the obstacle at a rate much faster than the
compression waves propagate through it, the
initial velocity of the ball is non-realistic.
Irreversible effects such as plastic deformation
and thermal breakdown would occur as such
speeds. The limiting factor is once again the ball
size. In a solid object, the distances between
particles are incredibly small, and it takes very
little time for a particle to collide into its
neighbor. Solving the time reference frame and
the ball size vs. speed issues would be an
excellent area for future work.

CONCLUSION

The Collision investigation added some
interesting insight into the conservation of kinetic
energy of spheres. The theory has not been
proven, though it certainly was not invalidated.
There is a possibility that the assumptions made,
notably the superposition of compression waves
oversimplified the collision, producing a
nonrealistic scenario.

With regard to the simulation, there are
many possible features that could be added to
improve the functionality. Firstly, it would be
interesting to arrange the particles upon a different
lattice, possibly a hexagonal or circular lattice.
The collision would most likely follow a similar
pattern, yet another grid may have added benefits:
speed of operation, more distinct waves, etc. Also,
the particle arrangement could be strictly assigned
to mimic the grain patterns of different materials.
Using a circular grid, the particles would be
arranged much like a forged sphere, where the
grains all converge at the center. The density of
particles is a bit disappointing as well. It can be
very difficult to see the compression wave
propagation due to the small size of the ball.
There are a few annoying bugs present in the
program that cause some strange effects at times,
though they are most likely attributed to the
random assignment of spring forces and
viscosities. The simulation could be modified to
allow multiple spheres at one instance. Multiple
sphere impacts could be simulated to determine
whether they are a chain of successive two body
collisions as the theory predicts.
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