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A detailed analysis of the effects of viscous drag on the motion of a
spinning metal sphere levitated by pressurized nitrogen gas was
conducted. Theoretical predictions indicate that the viscous torque should
be directly proportional to the angular velocity and inversely proportional
to the separation between the sphere and the stand, resulting in an
exponential decay of the rotation rate. By monitoring the rotation, the
exponential decay coefficients were determined, and by measuring the
capacitance of the system, the separation distances were probed. The
predicted proportionality between the exponential coefficients and the
capacitance values for a given separation is (5.20 +X189)Fs)". The
observed behavior supported the developed theory with a proportionality
of (2.1 £ 1.5x10 (Fs)".

INTRODUCTION THEORY
Many phenomena in the world around us Newton first postulated that if a velocity
can be explained with, as Richard Feynman ternggadient is established in a fluid, say along xhe
it, the behavior of “dry” water, or more clearly: direction, then the sheer stress in thdirection
fluid mechanics without the complication ofdue to the velocity in th& direction,S,, will be
viscosity! Along with the rather simple case ofproportional to the gradient of the vefoci% at
water flowing from a hole in a bucket, that point? The proportionality constanty, is the
complicated phenomenon such as the evolution @fscosity of the fluid.
vortices or supersonic flow can also be a
explained without citation to viscosity. However, Sy=n—

1)
there are several very simple cases where tl&e o o .
dynamics of “dry” water will just not do. For FOr initial simplicity, let us consider the case of

example try to imagine explaining terminaltWo parallel plates separated by a distabceyith
velocity without the sheer strain between the aff1€ tOp plate moving at a velocity, Though it is
and the falling object. Situations where the'0t necessarily seli-evident, the velocity of the
interplay between the fluid and an object ofluid immediately beside both of the plates will be
boundary layer which is free to move most ofte§Xactly that of the nearby plateBy combining
require the addition of viscosity, or “wet” water, thése _boundary conditions with Eq. (1) and

into the theoretical considerations, and it is oftefecalling that the sheer stress is equal in
these situations that are of most interest. magnitude but opposite in direction to the force

For example, the notion of a “wet” fluid P& unit area required to keep the top plate

was necessary in the investigation conducted herg‘.o"ing’ an equation for the viscous force is

the rotational decay of a levitating sphere. Thi erived”

paper will briefly develop an equation of motion E = —UXA )

for the sphere based on first principles of fluid v L

mechanics. The experimental methods for the/hile this relation was derived using two parallel

testing of theoretical developments will also belates, almost all surfaces can be considered to be

discussed along with uncertainty considerationsocally flat in the limit, so Eq. (2) can be utilized

Finally, a discussion of the observed behavior anigh the analysis of many varied geometries.

some conclusions about the applicability of the For example, one case is a spherically

developed theory will be made. symmetric ball rotating on a pocket of gas resting
in a spherical base. While the two surfaces of the
sphere and the base are not parallel plates, in the
limit of infinitesimal areas the curvature of the
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plates vanishes, and the viscous forces on eatthshould be noted that changing the unitsaof
differential area can be modeled with Eq. (2)will not affect the coefficient of the exponei,
Because of the geometry the viscous torque 8b the rotation may be measured in any fashion

eachdAis: without affecting the dependence of Eq. (6)L.on
_ .V While Eg. (6) dictates the behavior that
dr= —ntrdA 3) will be observed for the rotation as a function of
time, the work done here also dealt with the
' ¢ dependence ok. BecauselL was difficult to

observe directly, capacitance measurements were
used to determine it. The capacitance between
two parallel platesis:

&A

- ®

To first approximations, the sphere and base can
be treated as parallel plates, neglecting boundary
affects. The surface area of the platas,is
simply the surface of the sphere which rests in the

Figure 1: The parameterization used to simplify thebase' The equation for the surface area of a

problem of determining the viscous torque on a rota’tin&Ortlon of a sphere ig\=2mh, whereh can be

sphere. determined to bén=a—-+a* —b® (see Figure 1).
Eq. (8) is a valid indicator oE only if
is no capacitance inherent in the non-

Dealing with infinitesimal areas is not aipere
convenient parameterization of the problemyayitating system. In other words, lifapproaches
however, so the parameterization seen in Figure;bro and the system demonstrates a finite
is introduced. Herd is the variable with which  capacitance, then the capacitance values measured
will be defined,a is the radius of the spherg,is  for the system will reflect the influence of an
the angle where is equal to the radius of the jnherent capacitance,. This can be accounted
opening of the bas#, andh is its depth. In this o1 by considering the system as two capacitors in
parameterization Eq. (3) becomes: serieg the first having anL dependence as

dr = 21’ @sin%de (4) |nd|cat_ed by Eq. (8)_and the second as a constant
_ _ capacitor of capacitanceZ,. The separation
Eq. (4) must be integrated to determine thélependant capacitanc€, will be related to the

total viscous torque on the rotating sphere. Theffective capacitanc€,,, measured for the
integration is done from an angle of O radians t9ystem by:

¢ to account for the limited surface over which

the viscous torque will act. Defining the integral C :ﬁ (9)
of the sine-cubed term as the numerical fadgor, C,—Cyx
the viscous torque becomes: It is C that will be related to the exponential decay

_ 4n W coefficient of the sphere.
1= -2 BT () Since Eq. (7) and Eg. (8) indicate that both
In a rotating system that is not driven, thek and C are inversely proportional to, the
torque described in Eq. (5) will cause the rotatiofelationship betweek andC must be directly
rate of the sphere to decay. Newton’s second laroportionality, i.e.k = RC. Combining them
in angular form, &= 1, yields the equation of reveals that the proportionality constarR,
motion for the system. inserting the moment oPetween the two is:

inertia of a rotating sphere of mass,and radius, na’
- 2 . . R=5mB (10)
a, 1=2/5ma°, and then using separation of £,Am
variables, yields the following function of time: |t s the observed rotational decay and the
w=we™" (6) observed value foR that can be used to test the
where: theory developed here.

2
k=512 @)
mL



Moffitt: Separation Dependence of Viscous Decay Coefficients 3

EXPERIMENTAL multiple runs were conducted at low pressures,

A steel sphere with a steel rodassumed to be the most prone to error, nd
perpendicular to its surface was levitated in amalues were calculated for all runs using the entire
aluminum stand designed to fit the curvature ofime series and the first half of the time series.
the sphere well. Nitrogen gas was used to levitaiEhese multiple values were used to find average
the ball, which was then spun and aligned by handalues. The standard deviations were used as an
so that the rod was perpendicular to the tabkestimation of the uncertainty in the values.
surface. A Matheson Regulator, model numbeFinally, the averagk& values were plotted against
IL-580, was used to control the pressure suppliethe correspondindg values. A weighted linear
to the stand. The flow valve of the regulator wasurve fit produced the proportionality constant
opened completely for each run. and an estimation of its uncertainty.

The rotation rate of the steel sphere was
measured by monitoring the signal of a reflecteRESULTS
laser. Four strips of electrical tape were equally The rotational decay of the ball for about
spaced around the sphere. A Uniphase Mod2D00 seconds was measured with gauge pressures
155SL 3mW laser, was suspended from a stamenging from 4 psi, the first non-zero mark on the
such that its beam intersected the ball within theegulator, to 10 psi. A second run was completed
length of the electrical tape. A focusing lens wasor each of the low pressures to aid in determining
used to focus the reflected beam onto #he uncertainty in these measures. Figure 2 is the
phototransistor. As the electrical tape rotatedbotation data versus time for the run conducted at
through the incident laser beam, the intensity dfO psi plotted as a semi-log plot. The behavior
the reflected beam would drop, causing theeen here is representative of the behavior that
voltage across the phototransistor to increase. Was exhibited for all pressures.
Schmitt trigger then produced a TTL compatible
signal that was readable by a HP 5385A
frequency counter. The frequency counter was 7
controlled by a LabView 4.1 program, which took 5
control of the HP Frequency counter, turned ong
the filter option, and averaged the rotation rateg
over 10 s. It then corrected for the 4 strips ofé
electrical tape by dividing the data from the
frequency counter by 4.

The capacitance of the system was
measured Wlth a GenRad 1657 lebrldge 200 400 600 800 1000 1200 1400 1:300
set to treat the resistance as in series and to_a 2 A . ot otation dat lected at
frequency of 1 kHz. A stand was used to preverjfJu'¢ < ~ Semi-iog plot of roration data cotiected at a
the weight of the alligator clips and the wiringg;
from affecting the separation distance. '

The pressure values on the Matheson The slope of the apparent linear function,
regulator gauge were calibrated byVéatron when plotted as a semi-log plot, was the negative
pressure transducer. The pressure was determingicthe exponential coefficiet The values ok
by the voltage from the transducer. An atm ofor the different gauge pressures are listed in
pressure corresponded to each 4.7 mV measurethble |. For all runk was also determined by
Once the voltage values were collected, §tting an exponential to only the first half points.
standardization curve was created between thghe averagd value for each gauge pressure with
gauge pressure and atmospheric pressure allowifige calculated standard deviation as the error bars
conversion from one to the other. is plotted against gauge pressure in Figure 3.

All rotation and capacitance data wereThese values are also listed in Table I. Using Eq.
analyzed using IgorPro. The data were modele®d) along with theC, value measured for the
assuming the motion to be described by Eq. (63ystem, 107 + 1 pF, thedependent capacitances,
The exponential curve fitting function providedc, seen in Figure 4, were calculated. The increase
by lgorPro was utilized to determirle The jn the error bars is due to an increasing sensitivity
measured capacitance valu€d,, were used to of the low pressur€ values to the uncertainty in
calculateC using Eq. (9). To aid in the estimationC,.
of the uncertainty in the calculated values Kor

A  Run_5(10psift+
— Cuneri

Revolu

uge pressure of 10 psi. The solid line is an exponential
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Table I: Exponential coefficient values determined through curve fitting of the complete time series and the first Half of eac
time series. These values are listed with the value of the pressure of each run. Also listed are the average of tiede values

their standard deviation. N/A indicates that a second run was not performed. Actual pressures are known to + 0.002 atm.

Pressure Value Complete Data First Half of Data Statistical AnalysiL‘

Gauge [ Actual First Run | Second Run| First Run | Second Runl Average [ STD

Pressure| Pressure| k x10' s* | kx10's* kx10's* | kx10' s? kx10's* [ x10* st

4 psi 1.16 atm| 7.90 8.47 8.21 8.74 8.33 0.36

5 psi 1.24 atm| 6.29 6.52 6.44 6.67 6.48 0.16

6 psi 1.31 atm| 6.18 6.14 6.31 6.25 6.22 0.07

7 psi 1.38 atm| 6.08 N/A 6.20 N/A 6.14 0.08

8 psi 1.46 atm| 5.97 N/A 6.14 N/A 6.06 0.12

9 psi 1.53 atm| 6.06 N/A 6.26 N/A 6.16 0.14

10 psi 1.60 atm 5.97 N/A 6.01 N/A 5.99 0.03

. | fualpressue am) L values experimentally observed f6randk. The
1 ] 1 1 ' error bars are the standard deviation observed in
o 8500 ° -} ower Law the k values and the uncertainty in tRevalues
2 w0 Jt\ [ ) =2t b propagated intk. The observed value & is
5 a-oorooves ) taken from the slope of the linear fit. Itis (2.1 +
E 750 \ C=-20.8+33 15)X1(§ (FS)l.
&} 700
5 650 Table II: Measured, calculated, and accepted values needed
g e S for analysis.
) ° . ) ) , N | Variable Value

Gauae Pressure (psi)

Figure 3: The averagk value plotted against the gaugc" Rad!us of sphere (m)
pressure at which each was determined and the actfjaradius of standy (m)

0.05072 + 0.00008
0.0442 + 0.0001

pressure that the regulator produced at each gauge presgqiMass of spherem (kg) | 4.140 + 0.002
The power law used to fit thHevalues to the actual pressure" ¢ (rad) ArcSin[b/a] 1.058 + 0.007
values _is _Iisted along with the parameter values and th“iDepth of standh (M) 0.0258 = 0.0002
uncertainties. Numerical Factor 0.215 £+ 0.004

Actual Pressure (atm)

Surface Contact Area,

0.00822 + 0.00008

P S S R S A, ()
2.0x1c1)8 i N ] Viscosity' of N,, n @
€ ' | y=a+bwe 300K and 0.1 Mbar (18.0+1.3)x 16
~ 1.6 it Parameters =
3 a=(637:029e10 [ || (NS/I’T\Z)
8 1.4 \ b= (6+9)e-08
§ 12 \ c=_268+77 -
= 10 \
g 08 rox10 ° TF
06 | - g Al a=(0+9)e-05
I I T z 09 b=(21+15)e+05
4 5 6 7 8 9 10 ]

) Galne Presaire (psi . g /’“
Figure 4: Calculated values for thedependant capacitance § 08 T
versus the gauge pressure and the corresponding actgal
pressure. The power law fit and its parameters are listed fn =~ °” | —
the plot. & _H/

0.6
Table Il includes all of the pfsical 0_6' 08 10 12 14 16x10°

measurements of the sphere and stand, the _ , | Acmal Capacitanca (5
calculated value fo andh, and the accepted Igure 5: Exponential coefficient of the curve fksplotted

. J k I{lgainst the corresponding capacitanCe, The error bars
value for the viscosity of nitrogen gas at 300 Keflect the uncertainty ik and inC and were used to weight

and 0.1 Mbar. Using Eq. (10) the predicted valuge linear fit. The parameters of the fit are listed in the plot.
of Rwas calculated to be (5.20 + 0.39)X{Bs)".

Figure 5 presents the relationship between the
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ESTIMATION OF UNCERTAINTY betweenk andC. Figure 5 indicates that the
The uncertainty in the predicted valuePf values are well fit by a straight line when plotted
for the system arises in part from the uncertaintiagainst the correspondir@ values for a specific
in the values of the radius of the rotating sphaye,pressure. This is strong support for the predicted
and in the radius of the base, Both of these linear behavior. It should be noted, however, that
values were measured three times using a settlod significant increase in the error bars at higher
calipers. The average value is the reported valwa@jues ofC might also allow the data to be well fit
and the uncertainty is the standard deviation lny other functions. So while there is strong
these values. The uncertaintiesairandb were qualitative evidence that the linear relationship
then propagated t¢, B, h, andA. betweenk andC is correct, this evidence is not
R is also sensitive to the uncertaintyqin entirely conclusive.
due to the unknown pressure and temperature of ~ The greatest support for the theory
the nitrogen. Whilen does not vary significantly developed here is the quantitative agreement
with pressure, the variations due to temperatuRetween the observeR value, (2.1 £1.5)x10
are significant. The estimated uncertainty ip  (FS), and the predictedR value, (5.20 *
corresponded to roughly 25 K of temperatur®-39)x10 (Fs). Since the uncertainty in the

uncertainty, a conservative estimate. This value gIbserved value dr can account for the observed
listed in Table II. Finally, all of these discrepancy between these values within two

uncertainties were propagated into the predictegfandard deviations, then it can be concluded that
value ofR. propag P the observed behavior supports the predicted

Since the uncertainty of the observed&havior.
value forR was taken from the weighted linear fit
of the observed values versus the observe€d
values, it was necessary to determine the
uncertainty ik andC. To aid in the estimation of | .
the certainty of thé values several things were R- Feynman, R. Leighton, M. Sand$ie Feynman
done. The first was to replicate the runs at low éeCtUF:eSé’? Ph\{;‘gj)p‘dd'son'wes'ey Publishing

0., Reading,

o o et b L Db o Pysiisdcambride
making thek values more sensitive to overall, . Llf.g"’ersl'_\',tyRPres.S'l(cfr'\}\?r'lig?e' 1395) ol of
fluctuations in the system. The standard deviatio" ap'haY’ o EZ”'CJ'h' V\?I —Wﬁ
of all of these values was used as a quantitative 70%3997) + (John Wiley & Sons, Inc., New
es“maE;.%neOwa(S:eur?g?rﬁ?ggy'in the measured4D Lide ed. The Handbook of Chemistry and Physizg"
capacitance were determined directly from the Ed., (CRC Press, Boca Rotan, 1996)
noise seen by the RLC digibridge. The noise was
generally £ 0.001 nF and did not appear to change
in magnitude over the range investigated. This
was also the uncertainty seen in the valu€pf
These uncertainties were then propagated @to
Finally, the estimated uncertainties thwere
propagated intdk so that the linear fit ot andC
could be properly weighted.

DISCUSSION AND CONCLUSIONS

The first support for the theory developed
here is that the rotational damping observed is fit
very well by an exponential function. This is
indicated by the excellent agreement between the
curve fit and the data in Figure 2, and it supports
the qualitative conclusion that the rotational
viscous torque varies a® to the first power.
Thus, the damping is analogous &ioke’s
damping.

The inverse proportionality betwe&rand
L was also supported by the observed relationship



