
1

The Separation Dependence of Viscous Damping Coefficients
Jeffrey R. Moffitt

Physics Department, The College of Wooster, Wooster, Ohio 44691

May 2, 2002

A detailed analysis of the effects of viscous drag on the motion of a
spinning metal sphere levitated by pressurized nitrogen gas was
conducted.  Theoretical predictions indicate that the viscous torque should
be directly proportional to the angular velocity and inversely proportional
to the separation between the sphere and the stand, resulting in an
exponential decay of the rotation rate.  By monitoring the rotation, the
exponential decay coefficients were determined, and by measuring the
capacitance of the system, the separation distances were probed.  The
predicted proportionality between the exponential coefficients and the
capacitance values for a given separation is (5.20 ± 0.39)×105 (Fs)-1.  The
observed behavior supported the developed theory with a proportionality
of (2.1 ± 1.5)×105 (Fs)-1.

INTRODUCTION
Many phenomena in the world around us

can be explained with, as Richard Feynman terms
it, the behavior of “dry” water, or more clearly:
fluid mechanics without the complication of
viscosity.1  Along with the rather simple case of
water flowing from a hole in a bucket,
complicated phenomenon such as the evolution of
vortices1 or supersonic flow2 can also be
explained without citation to viscosity.  However,
there are several very simple cases where the
dynamics of “dry” water will just not do.  For
example try to imagine explaining terminal
velocity without the sheer strain between the air
and the falling object.  Situations where the
interplay between the fluid and an object or
boundary layer which is free to move most often
require the addition of viscosity, or “wet” water,1

into the theoretical considerations, and it is often
these situations that are of most interest.

For example, the notion of a “wet” fluid
was necessary in the investigation conducted here:
the rotational decay of a levitating sphere.  This
paper will briefly develop an equation of motion
for the sphere based on first principles of fluid
mechanics.  The experimental methods for the
testing of theoretical developments will also be
discussed along with uncertainty considerations.
Finally, a discussion of the observed behavior and
some conclusions about the applicability of the
developed theory will be made.

THEORY
Newton first postulated that if a velocity

gradient is established in a fluid, say along the x
direction, then the sheer stress in the y direction
due to the velocity in the x direction, Sxy, will be
proportional to the gradient of the velocity, ux, at
that point.2  The proportionality constant, η , is the
viscosity of the fluid.
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For initial simplicity, let us consider the case of
two parallel plates separated by a distance, L, with
the top plate moving at a velocity, v.  Though it is
not necessarily self-evident, the velocity of the
fluid immediately beside both of the plates will be
exactly that of the nearby plate.2  By combining
these boundary conditions with Eq. (1) and
recalling that the sheer stress is equal in
magnitude but opposite in direction to the force
per unit area required to keep the top plate
moving, an equation for the viscous force is
derived.2

F
v

L
Av = −η (2)

While this relation was derived using two parallel
plates, almost all surfaces can be considered to be
locally flat in the limit, so Eq. (2) can be utilized
in the analysis of many varied geometries.

For example, one case is a spherically
symmetric ball rotating on a pocket of gas resting
in a spherical base.  While the two surfaces of the
sphere and the base are not parallel plates, in the
limit of infinitesimal areas the curvature of the
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plates vanishes, and the viscous forces on each
differential area can be modeled with Eq. (2).
Because of the geometry the viscous torque at
each dA is:
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Figure 1:  The parameterization used to simplify the
problem of determining the viscous torque on a rotating
sphere.

Dealing with infinitesimal areas is not a
convenient parameterization of the problem,
however, so the parameterization seen in Figure 1
is introduced.  Here θ  is the variable with which r
will be defined, a is the radius of the sphere, ϕ  is
the angle where r  is equal to the radius of the
opening of the base, b, and h is its depth.  In this
parameterization Eq. (3) becomes:

d a
L

dτ π ηω θ θ= −2 4 3sin (4)

Eq. (4) must be integrated to determine the
total viscous torque on the rotating sphere.  The
integration is done from an angle of 0 radians to
ϕ  to account for the limited surface over which
the viscous torque will act.  Defining the integral
of the sine-cubed term as the numerical factor, B,
the viscous torque becomes:

τ π ηω= −2 4a B
L

(5)

In a rotating system that is not driven, the
torque described in Eq. (5) will cause the rotation
rate of the sphere to decay.  Newton’s second law
in angular form, Iω̇ τ= , yields the equation of
motion for the system. Inserting the moment of
inertia of a rotating sphere of mass, m, and radius,
a , I ma= 2 5 2, and then using separation of
variables, yields the following function of time:

ω ω= −
0e

kt (6)
where:

k B
a

mL
= 5
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It should be noted that changing the units of ω
will not affect the coefficient of the exponent, k,
so the rotation may be measured in any fashion
without affecting the dependence of Eq. (6) on L.

While Eq. (6) dictates the behavior that
will be observed for the rotation as a function of
time, the work done here also dealt with the L
dependence of k.  Because L was difficult to
observe directly, capacitance measurements were
used to determine it.  The capacitance between
two parallel plates3 is:

C
A

L
= ε0 (8)

To first approximations, the sphere and base can
be treated as parallel plates, neglecting boundary
affects.  The surface area of the plates, A, is
simply the surface of the sphere which rests in the
base.  The equation for the surface area of a
portion of a sphere is A ah= 2π , where h can be

determined to be h a a b= − −2 2  (see Figure 1).
Eq. (8) is a valid indicator of L only if

there is no capacitance inherent in the non-
levitating system.  In other words, if L approaches
zero and the system demonstrates a finite
capacitance, then the capacitance values measured
for the system will reflect the influence of an
inherent capacitance, C0.  This can be accounted
for by considering the system as two capacitors in
series3: the first having an L dependence as
indicated by Eq. (8) and the second as a constant
capacitor of capacitance, C0.  The separation
dependant capacitance, C, will be related to the
effective capacitance,Ceff , measured for the
system by:

C
C C

C C
eff

eff

=
−

0

0

(9)

It is C that will be related to the exponential decay
coefficient of the sphere.

Since Eq. (7) and Eq. (8) indicate that both
k  and C are inversely proportional to L, the
relationship between k and C must be directly
proportionality, i.e. k  = RC.  Combining them
reveals that the proportionality constant, R,
between the two is:

R B
a

Am
= 5

2

0

π η
ε

(10)

It is the observed rotational decay and the
observed value for R that can be used to test the
theory developed here.
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EXPERIMENTAL
A steel sphere with a steel rod

perpendicular to its surface was levitated in an
aluminum stand designed to fit the curvature of
the sphere well.  Nitrogen gas was used to levitate
the ball, which was then spun and aligned by hand
so that the rod was perpendicular to the table
surface. A Matheson Regulator, model number
IL-580, was used to control the pressure supplied
to the stand.  The flow valve of the regulator was
opened completely for each run.

The rotation rate of the steel sphere was
measured by monitoring the signal of a reflected
laser.  Four strips of electrical tape were equally
spaced around the sphere.  A Uniphase Model
155SL 3mW laser, was suspended from a stand
such that its beam intersected the ball within the
length of the electrical tape.  A focusing lens was
used to focus the reflected beam onto a
phototransistor. As the electrical tape rotated
through the incident laser beam, the intensity of
the reflected beam would drop, causing the
voltage across the phototransistor to increase. A
Schmitt trigger then produced a TTL compatible
signal that was readable by a HP 5385A
frequency counter.  The frequency counter was
controlled by a LabView 4.1 program, which took
control of the HP Frequency counter, turned on
the filter option, and averaged the rotation rate
over 10 s.  It then corrected for the 4 strips of
electrical tape by dividing the data from the
frequency counter by 4.

The capacitance of the system was
measured with a GenRad 1657 RLC Digibridge
set to treat the resistance as in series and to a
frequency of 1 kHz.  A stand was used to prevent
the weight of the alligator clips and the wiring
from affecting the separation distance.

The pressure values on the Matheson
regulator gauge were calibrated by a Viatron
pressure transducer. The pressure was determined
by the voltage from the transducer.  An atm of
pressure corresponded to each 4.7 mV measured.
Once the voltage values were collected, a
standardization curve was created between the
gauge pressure and atmospheric pressure allowing
conversion from one to the other.

All rotation and capacitance data were
analyzed using IgorPro.  The data were modeled
assuming the motion to be described by Eq. (6).
The exponential curve fitting function provided
by IgorPro was utilized to determine k.  The
measured capacitance values, Ceff , were used to
calculate C using Eq. (9). To aid in the estimation
of the uncertainty in the calculated values for k,

multiple runs were conducted at low pressures,
assumed to be the most prone to error, and k
values were calculated for all runs using the entire
time series and the first half of the time series.
These multiple values were used to find average
values.  The standard deviations were used as an
estimation of the uncertainty in the values.
Finally, the average k values were plotted against
the corresponding C values.  A weighted linear
curve fit produced the proportionality constant
and an estimation of its uncertainty.

RESULTS
The rotational decay of the ball for about

2000 seconds was measured with gauge pressures
ranging from 4 psi, the first non-zero mark on the
regulator, to 10 psi.  A second run was completed
for each of the low pressures to aid in determining
the uncertainty in these measures.  Figure 2 is the
rotation data versus time for the run conducted at
10 psi plotted as a semi-log plot.  The behavior
seen here is representative of the behavior that
was exhibited for all pressures.
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Figure 2:  A semi-log plot of rotation data collected at a
gauge pressure of 10 psi.  The solid line is an exponential
fit.

The slope of the apparent linear function,
when plotted as a semi-log plot, was the negative
of the exponential coefficient k.  The values of k
for the different gauge pressures are listed in
Table I.  For all runs k was also determined by
fitting an exponential to only the first half points.
The average k value for each gauge pressure with
the calculated standard deviation as the error bars
is plotted against gauge pressure in Figure 3.
These values are also listed in Table I. Using Eq.
(9) along with the C0 value measured for the
system, 107 ± 1 pF, the L dependent capacitances,
C, seen in Figure 4, were calculated.  The increase
in the error bars is due to an increasing sensitivity
of the low pressure C values to the uncertainty in
C0.
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Table I:  Exponential coefficient values determined through curve fitting of the complete time series and the first half of each
time series.  These values are listed with the value of the pressure of each run.  Also listed are the average of these values and
their standard deviation.  N/A indicates that a second run was not performed.  Actual pressures are known to ± 0.002 atm.

Pressure Value Complete Data First Half of Data Statistical Analysis
Gauge
Pressure

Actual
Pressure

First Run
k x104 s-1

Second Run
k x104 s-1

First Run
k x104 s-1

Second Run
k x104 s-1

Average
k x104 s-1

STD
x104 s-1

4 psi 1.16 atm 7.90 8.47 8.21 8.74 8.33 0.36
5 psi 1.24 atm 6.29 6.52 6.44 6.67 6.48 0.16
6 psi 1.31 atm 6.18 6.14 6.31 6.25 6.22 0.07
7 psi 1.38 atm 6.08 N/A 6.20 N/A 6.14 0.08
8 psi 1.46 atm 5.97 N/A 6.14 N/A 6.06 0.12
9 psi 1.53 atm 6.06 N/A 6.26 N/A 6.16 0.14
10 psi 1.60 atm 5.97 N/A 6.01 N/A 5.99 0.03
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Figure 3:  The average k value plotted against the gauge
pressure at which each was determined and the actual
pressure that the regulator produced at each gauge pressure.
The power law used to fit the k values to the actual pressure
values is listed along with the parameter values and their
uncertainties.
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Figure 4:  Calculated values for the L dependant capacitance
versus the gauge pressure and the corresponding actual
pressure. The power law fit and its parameters are listed in
the plot.

Table II includes all of the physical
measurements of the sphere and stand, the
calculated value for ϕ  and h, and the accepted
value for the viscosity of nitrogen gas at 300 K
and 0.1 Mbar.  Using Eq. (10) the predicted value
of R was calculated to be (5.20 ± 0.39)x105 (Fs)-1.
Figure 5 presents the relationship between the

values experimentally observed for C and k.  The
error bars are the standard deviation observed in
the k values and the uncertainty in the C values
propagated into k.  The observed value of R is
taken from the slope of the linear fit.  It is (2.1 ±
1.5)x105 (Fs)-1.

Table II: Measured, calculated, and accepted values needed
for analysis.

Variable Value
Radius of sphere, a (m) 0.05072 ± 0.00008
Radius of stand, b (m) 0.0442 ± 0.0001
Mass of sphere, m (kg) 4.140 ± 0.002
ϕ  (rad) ArcSin[b/a] 1.058 ± 0.007
Depth of stand, h (m) 0.0258 ± 0.0002
Numerical Factor, B 0.215 ± 0.004
Surface Contact Area,
A, (m2) 0.00822 ± 0.00008

Viscosity4 of N2, η  @
300K and 0.1 Mbar
(Ns/m2)

(18.0 ± 1.3) x 10-6
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Figure 5:  Exponential coefficient of the curve fits, k, plotted
against the corresponding capacitance, C.  The error bars
reflect the uncertainty in k and in C and were used to weight
the linear fit.  The parameters of the fit are listed in the plot.
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ESTIMATION OF UNCERTAINTY
The uncertainty in the predicted value of R

for the system arises in part from the uncertainties
in the values of the radius of the rotating sphere, a,
and in the radius of the base, b.  Both of these
values were measured three times using a set of
calipers.  The average value is the reported value,
and the uncertainty is the standard deviation in
these values.  The uncertainties in a and b were
then propagated to ϕ , B, h, and A.

R is also sensitive to the uncertainty in η
due to the unknown pressure and temperature of
the nitrogen. While η  does not vary significantly
with pressure, the variations due to temperature
are significant.4 The estimated uncertainty in η
corresponded to roughly 25 K of temperature
uncertainty, a conservative estimate.  This value is
listed in Table II.  Finally, all of these
uncertainties were propagated into the predicted
value of R.

Since the uncertainty of the observed
value for R was taken from the weighted linear fit
of the observed k values versus the observed C
values, it was necessary to determine the
uncertainty in k and C.  To aid in the estimation of
the certainty of the k values several things were
done. The first was to replicate the runs at low
gauge pressures.  The second was to calculate the
k values from the first half of the data, thus
making the k values more sensitive to overall
fluctuations in the system.  The standard deviation
of all of these values was used as a quantitative
estimation of this uncertainty.

The uncertainties in the measured
capacitance were determined directly from the
noise seen by the RLC digibridge.  The noise was
generally ± 0.001 nF and did not appear to change
in magnitude over the range investigated.  This
was also the uncertainty seen in the value of C0.
These uncertainties were then propagated into C.
Finally, the estimated uncertainties in C were
propagated into k so that the linear fit of k and C
could be properly weighted.

DISCUSSION AND CONCLUSIONS
The first support for the theory developed

here is that the rotational damping observed is fit
very well by an exponential function.  This is
indicated by the excellent agreement between the
curve fit and the data in Figure 2, and it supports
the qualitative conclusion that the rotational
viscous torque varies as ω to the first power.
Thus, the damping is analogous to Stoke’s
damping.

The inverse proportionality between k and
L was also supported by the observed relationship

between k and C. Figure 5 indicates that the k
values are well fit by a straight line when plotted
against the corresponding C values for a specific
pressure.  This is strong support for the predicted
linear behavior.  It should be noted, however, that
the significant increase in the error bars at higher
values of C might also allow the data to be well fit
by other functions.  So while there is strong
qualitative evidence that the linear relationship
between k and C is correct, this evidence is not
entirely conclusive.

The greatest support for the theory
developed here is the quantitative agreement
between the observed R value, (2.1 ± 1.5)x105

(Fs)-1, and the predicted R value, (5.20 ±
0.39)x105 (Fs)- 1. Since the uncertainty in the
observed value of R can account for the observed
discrepancy between these values within two
standard deviations, then it can be concluded that
the observed behavior supports the predicted
behavior.

1R. Feynman, R. Leighton, M. Sands,     The Feynman
Lectures in Physics   , (Addison-Wesley Publishing
Co., Reading, 1964)

2T. Faber,     Fluid Dynamics for Physicists   , (Cambridge
University Press, Cambridge, 1995)

3D. Halliday, R. Resnick, J. Walker,     Fundamentals of
Physics   , 5th Ed.  (John Wiley & Sons, Inc., New
York, 1997)

4D. Lide ed.,     The Handbook of Chemistry and Physics   , 77nd

Ed., (CRC Press, Boca Rotan, 1996)


