
Brubaker:  A Mechanical Model to Investigate Nonlinear Phase Transitions 1

A Mechanical Model to Investigate Nonlinear Phase Transitions
Daniel W. Brubaker

Physics Department, The College of Wooster, Wooster, Ohio 44691

May 2, 2002

A mechanical toy based on the previous work of Mancuso 1999 was built
to investigate nonlinear phase transitions.1  The exact apparatus used by
Mancuso was unavailable for purchase, so a similar apparatus was
constructed.  The motion of two balls rolling in a circular hoop was
investigated as the hoop was rotated about its central axis and an offset
axis (0.2 R).  It was found that the balls rolled to two stable equilibrium
positions when the hoop was rotated above a critical angular velocity
(approx 1.1 Hz).  About the central axis, the equilibrium positions were
symmetric but about the offset axis the equilibrium positions were
asymmetric.  As the angular velocity was decreased from above the
critical value back to 0, a first-order phase transition was partially
observed.

INTRODUCTION

Mechanical models are often useful for
explaining or illustrating a phenomenon that may
seem counter-intuitive.  The case of balls rolling
inside a hoop that is being rotated about its central
axis is well known and can be predicted
accurately; however, the case of balls rolling
inside a hoop being rotated about an offset axis is
not so well known.

The first observable effect is that the
equilibrium positions where the balls come to rest
at maximum angular velocity ωmax  are
asymmetric.  Also, as ωmax  is decreased towards
0, the equilibrium position closest to the offset
axis becomes unstable.  The ball in this location
will roll down the hoop and cross to the other side
to come to rest in the stable equilibrium position
next to the other ball.  This is a phase transition:
the ball leaves an equilibrium position that has
become unstable and arrives at a new stable
equilibrium position.  As ω decreases to 0, both
balls will come to rest at the bottom of the hoop.

The data collected in this experiment is
best presented in the form of a bifurcation
diagram which shows how an initial stable fixed
point will become unstable, but creates two stable
fixed points at the same time.  By definition, a
fixed point corresponds to a point where an
object's velocity vanishes to 0.  A stable fixed
point is best idealized as a "sink" -- a ball placed
in a stable fixed point will tend to stay there, and
any perturbations will cause the ball to oscillate

but return to the fixed point.  An unstable fixed
point is best idealized as a "saddle".  A ball placed
in an unstable equilibrium will also remain at that
point initially, but any perturbations will cause the
ball to roll away to a new stable equilibrium point.
In this experiment, the initial (ω=0) stable point
is at the bottom of the hoop and the unstable fixed
point is at the top of hoop.  When ω= ωmax , the
top and bottom of the hoop are the unstable fixed
points and the fixed points are located on the sides
of the hoop.2

THEORY

A free-body diagram showing the forces acting on
the ball as it rolls freely in the rotating hoop is
shown in Figure 1.  It is assumed that the hoop
rotates at a constant angular velocity ω.  To solve
the equation of motion for this problem, the
Lagrangian equation is used.
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In all equations, it is assumed that the mass of the
ball is a point mass.  Using the Euler-Lagrange
equation, the Lagrangian of Equation 1 is
simplified to the form
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A Stokes' damping force proportional to the first
power of θ̇  is added, and damping is let dominate
inertia since the focus of this experiment is on
only the location and nature of the fixed points
and not the movement about them.
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Figure 1: Free-body diagram for a ball rolling in a circular
track.  In this figure, the track is rotating about an offset axis
(Figure taken from Ref. 1 p. 272).

 To make the differential equation
dimensionless, a new variable τ  (dimensionless
time) = t/T is introduced, where T is a
"characteristic time" to be defined later.
Substituting τ =t/T into Equation 2,
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becomes the new equation of motion.  Each term
in this equation has units of torque (Nm).  The
parameter b is a damping parameter representing
the size of the retarding torque with units of Nms.

Dividing Equation 3 by the quantity mgR
gives the equation
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The "characteristic time" T is now chosen to be
T=b/mgR            (Eq. 5)

The condition that damping dominates inertia can
be represented by the case
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and remove it from Equation 4.
The dimensionless parameters β  and α

are now chosen so that
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Substituting Equations 5, 6, and 7 into Equation 4,
the dimensionless equation of motion with
damping dominating inertia becomes
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By setting 
d

dt

θ
=0 and manipulating Equation 8,

      α
β
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can be obtained.  A plot of α  vs. θ  will give a
graph of the number, location, and nature of the
fixed points.  Plotting β  vs. θ  will produce a
bifurcation diagram for the hoop rotated about its
central axis.

EXPERIMENT

The motion of the balls was analyzed as
the hoop was rotated about both its central axis
and an offset axis (0.2R).  Figure 2 below shows a
schematic of the experimental apparatus set up in
the upright position to study the motion of the
balls as the hoop was rotated about its central
axis.  To aid in the determination of the location
of the equilibrium positions on the hoop, lines
were drawn on the hoop in 22.5 degree intervals
starting at θ=0 (bottom of the hoop) up to 90
degrees.

Figure 2: A schematic of the experimental apparatus used to
study the motion of the balls as the hoop was rotated about
its central axis.

To provide a constant angular velocity ω,
a DeWalt 3/8" V.S.R. drill was locked in the on
position and connected to a Powerstat variable
autotransformer.  The ω could then be varied by
changing the voltage of the autotransformer.
When the hoop was rotated about its central axis,
both balls were placed in the hoop and the
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autotransformer connected to the drill was turned
to approximately V=20.  This corresponds to an
ω of approximately 7 rad/s.  Both balls would
then leave the equilibrium point at the bottom of
the hoop (θ=0) and roll to new symmetric
equilibrium positions on the sides of the hoop.

When the hoop is rotated about an offset
axis, a "flapper" mechanism is necessary to hold
the balls at initial positions until the hoop has
reached its critical ω.  When the hoop is rotating
at ωmax , the balls roll into two new asymmetric
equilibrium positions: θ−  and θ+ .  θ−  is
designated as the equilibrium position closest to
the offset axis, θ+  is the equilibrium position
farthest from the offset axis.  It was found that the
first ball reached an equilibrium position at θ+
with an ω of approximately 1.1 revolutions/s
(approx. 7 rad/s) corresponding to an
autotransformer setting of approximately 20. The
second ball reached an equilibrium position at θ−
with an ω of approximately 2.4 revolutions/s
(approx 15 rad/s) corresponding to an
autotransformer setting of approximately 25.

When ω was decreased from ωmax  to 0,
the equilibrium position at θ−  becomes unstable at
approx. 16 rad/s.  The ball in this position will
then leave θ−  and attempt to roll to the
equilibrium position at θ+ .  This is a phase
transition: a ball leaving an equilibrium position
that has become unstable and moving to a stable
equilibrium position.  However, the channel in the
hoop was too shallow and the ball was always
ejected at approx. θ=0, so the phase transition
was never observed to completion.

ANALYSIS AND INTERPRETATION

All data were collected using a Canon
ZR10 digital video camera capturing video at a
shutter speed of 1/8000.  A firewire-equipped
Macintosh G4 cube running iMovie was used to
import the video files for analysis.  Apple
Computer's iMovie v. 2.1.1 was then used to
determine ω, θ− , and θ+  as the hoop was rotated
about the offset axis.

To construct the bifurcation diagrams
shown in Figures 3 and 4, the quantities
"corrected θ−" and "corrected θ+" were
introduced.  The bifurcation diagram requires that
the initial position of both balls be θ=0; however
the flapper holds both balls at initial positions of
25 and 32 degrees, respectively.  The quantity
corrected θ−  was given as -(32-θ−) and corrected
θ+  was given by (25-θ+).  This sets the initial

position of both balls to 0 and gives corrected θ− a
negative value as θ− increases  and corrected θ+  a
positive value as θ+  increases as a function of ω.
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Figure 3: The bifurcation diagram constructed using the data
of ω, corrected θ− and corrected θ+ .  ω is plotted from 0

to ωmax  on the x-axis.  Corrected theta is plotted from -35

to 55 on the y-axis. θ− reaches a maximum displacement of

-34 
o and θ+  reaches a maximum displacement of 54 

o.
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Figure 4: The bifurcation diagram constructed using the data
of ω, corrected θ− and corrected θ+ . Corrected theta is
plotted on the same scale as in Figure 3.  The phase
transition starts in θ− when ω=2.4.  At ω=2.5, the ball
exits the apparatus and the phase transition is not observed
to completion.  It is assumed that the balls would rest at the

stable equilibrium at θ+ =25 
o and approach θ=0 together

as ω approaches 0.

The bifurcation diagrams above
can be used to explain the general behavior of the
system. It can be seen that both balls start at θ=0
(due to the expressions for corrected θ+  and
corrected θ−).  As ω is increased from 0, the ball
on the side of the hoop farthest from the offset
axis will break away first (ω=1.1 rev/s) and be on
its way to the stable equilibrium point θ+  when
the ball closest to the offset axis will break away
(ω=2.4 rev/s) and roll towards the stable
equilibrium point θ−.  At ωmax , both balls are in
their respective asymmetric stable fixed points on
opposite sides of the hoop.
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Decreasing the angular velocity from ωmax

to 0, it can be seen that θ− becomes unstable first
(at a lower ω).  The ball will then leave θ− and
undergo a phase transition to move to the new
stable point at θ+ .  However, when the ball
reaches approximately θ=0 (θ=9 o, the ball
crosses over slightly) it falls out of the track and
terminates the phase transition.  Based on the
overall appearance of the bifurcation diagram and
literature, it can be assumed that the ball would,
ideally, continue the phase transition and come to
rest beside the other ball at the stable fixed
equilibrium point θ+ . 3 4−   θ+  will continue to
decrease as ω decreases until both balls are
resting at θ=0 when ω=0.

The largest uncertainty in this experiment
arises from the experimental setup and the data
collection.  The hoop is not perfectly aligned with
either of the axes about which it rotates, so small
oscillations are induced in the hoop as it rotates.
These oscillations cause the position of the balls
in their respective equilibrium positions to
oscillate by approximately ±1 o.

Another uncertainty is that the position of
the balls can oscillate drastically in the time
necessary to compute ω.  Thirty frames of video
are necessary to compute data for 1 second in
iMovie, and in those thirty frames the ball can
move as much as 20 o (especially if the ball is just
breaking away from an unstable fixed point).
This produced large uncertainty values in the
position of the balls at the critical values of ω.
However, when the balls reached their stable
equilibrium points with the hoop rotating at ωmax ,
the oscillations about the fixed points was greatly
decreased (±approx 3 o).

CONCLUSION

It can be concluded that this mechanical
model is valid for investigation of basic nonlinear
phenomenon (stable and unstable fixed points)
and the phase transition.  The data collected using
the apparatus can be used to construct a
bifurcation diagram which shows the behavior of
the system as the parameter ω increases from 0 to
ωmax .  This bifurcation diagram will follow the
form of a pitchfork bifurcation.  It can be
concluded that the data obtained were not very
precise.  However, the bifurcation diagrams
constructed followed the same general form of a
pitchfork bifurcation, and allowed for the
observation of a stable fixed point becoming
unstable, two new stable fixed points forming, and

then these stable fixed points becoming unstable
again.
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