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This experiment used Angstrom’s method to determine the thermal
conductivity of a brass rod. A periodic square heat pulse was applied to
one end of a brass rod while leaving the other end at room temperature.
Using Fourier analysis on the temperature data collected, the thermal
conductivity of the rod was found to be 133 ± 84 W/(m*˚K) and 163 ± 35
W/(m*˚K) for the 1 st and 3rd harmonic of the heat wave respectively, which
compares well to the accepted value of 128 W/(m*˚K).

INTRODUCTION

Angstrom developed a method of
determining the thermal conductivity of a metal
rod by applying an alternating heat pulse to one
end while leaving the other end at room
temperature. Doing this causes a heat wave to
propagate down the rod and creates an observable
temperature difference between two points on the
rod. This also creates a varying phase relationship
between the measured temperature recorded at the
first and second points.1 The thermal conductivity
of the rod can be determined if the temperature of
these two points is measured as a function of time.

Since the temperature changes in this
experiment are periodic, the measurements of the
power input used to heat the system are not
required. Because of this, absolute measurements
of the temperature are not required so that only
relative changes in magnitude of temperature as a
function of time and position must be recorded.
The thermistors used in this experiment therefore
do not need to be calibrated and only need to
respond linearly over changes of a few degrees.1

This experiment uses a power source
driven by a function generator to produce a heat
pulse in a brass rod. Using a computer program
written by a previous College of Wooster student
to gather data, Fourier analysis is used to
determine the thermal conductivity of the brass
rod.

THEORY

For this experiment the heat generated by
a chamber at one end of the rod will cause a pulse
down the length of the rod. Part of the heat
traveling down the length of the rod will be

transmitted through conduction, part will heat the
rod itself, and part of the heat will be lost to the
air through radiation. The following theory
follows the development given in      Advanced
Practical Physics    by Worsnop and Flint.2

Thermal conductivity is defined through
the rate of heat energy lost through the surface of
some object.
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where T is the temperature, ∇ is the gradient
operator, ds is an element of surface area, and k is
the thermal conductivity of the rod. The negative
sign in front of the double integral shows that the
direction of heat flow is to lower temperatures.

This expression along with the expression
for the heat loss through radiation and the amount
of heat created in the rod can be added to get a
general equation for the change in heat energy Q
per change in time t of an object of density ρ
occupying a volume V with a specific heat s (see
equation 1).

Since there is no heat source within the
rod, equation 1 simplifies since dQ/dt = 0.
Green’s first theorem is used to transform the
integral over the surface for the conductivity into
a volume integral. Since the material is
uniform∇k=0 in the volume integral because k is
a constant. Because of this, there will be radiation
loss.

For a rod of cross sectional area A and
perimeter P, a wave equation is written for the
cylindrical geometry for the bar in this experiment
as
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k
∂ 2T

∂x2 − sρ
∂T

∂t
−

PR

A
(T − T0) = 0     (2)

where T is the temperature, T0 is the ambient
temperature, and R depends on how emissive the
surface of the material is. T - T0 can be simplified
and rewritten as τ  such that τ ≡ T - T0.

In this experiment a periodic heat wave is
applied to the rod with a frequency of ω=2πf,
where f is the inverse of the period of the heat
wave and of the oscillation of the temperature.
Since several combined frequencies are being
observed:

τ(x,t) = Cn( x)einωt

n=−∞

∞

∑  (3)

Substituting this into equation 2, it is required that
Cn(x) must satisfy equation 4

K
∂ 2Cn

∂x 2 − HCn − inωCn

 

 
  

 
 einωt∑ = 0 (4)

where K=k/(sρ), H=PR/(Asρ). Since the function

einωt forms a complete orthogonal set, each
coefficient in equation 4 must vanish. Cn must
then satisfy the differential equation

K
∂ 2Cn

∂x 2 − Cn H + inω( ) = 0 (5)

where K, H , and ω are constants independent of x.
Equation 5 lends itself easily to the solution

Cn(x) = Cn0e
± λn x

 (6)

where λn = [(H+inω]/K. Because λn is complex

the square root of λn is also complex.

If λn = αn + iβn  and one sets the real and

imaginary parts of λn equal to each other
respectively, then we get equations 7 and 8 below

αn
2 − βn

2 =
H

K
                     (7)

and

2αnβn =
nω
K

(8)

In Angstrom’s method, αn and βn are found
experimentally which lets us find the thermal
conductivity k = sρK.

The solutions of the coefficient Cn(x)
allows us to find the Fourier series for τ(x,t) such
that

τ(x,t) = Cn0e−αnxe i(nωt−βnx)∑ (9)

since βn is a function of n, but is not linear. The
coefficients of Cn0 determine the form of the heat
wave at x=0 in equation 3. So that no single form
or single wave of the heating function is implied,
the solutions may be complex. If the form Cn0

=An0 e
iγ is chosen where An0 and γn are real, then

the general case of τ is:

τ(x,t) = An0∑ e−αnx sin(nωt − βnx + γ n) (10)

for the temperature variation that can be observed
experimentally, where the imaginary part of the
complex function has been chosen rather than the
real part since the common use of Fourier analysis
employs the sine function instead of the cosine
function in this form of a real function.

In this experiment the variation in heat
with respect to time at two different points along
the rod, x1 and x2 are being observed. Therefore
the amplitude of the nth harmonic at x is An0e− αn x1

and the phase constant is γ n − βn x1 . At x2 the

amplitude for the same harmonic is An0e− αn x2  and
the phase constant is γ n − βn x2  . Because of this
the ratio of the amplitudes is

rn = e−α n (x1−x2) = eαn (x2 −x1) =
A1

A2
(11)

and          αn =
ln(rn)

(x2 − x1)
      (12)

The difference in phase of the two harmonics at
the points x1 and x2 is φn =βn(x2 - x1) so that βn=

φn/(x2 - x1). By determining the components of the
Fourier series of the temperature at x1 and x2 for
the nth harmonic, αn and βn can both be
determined and we can therefore find k from
equation 8:



Andrew Bouchard: Angstom’s Method of Determining Thermal Conductivity 3

k = sρK =
sρnω
2αnβn

=
sρnω(x2 − x1)2

2φn ln A1
A2

 
 

 
 

(13)

where A1/A2 is the ratio of the amplitude of the
harmonic n and φn is the difference in the phase of
harmonic n. Since equation 13 can be used for any
harmonic in the system several harmonics can be
used for the Fourier analysis.

EXPERIMENT

For this experiment, heat was applied to a
brass rod in the form of a square wave pulse. The
heater which produces this wave, is powered by a
Kepco BOP 100 power supply that applies a
voltage to run the heater. This power supply is
connected to a Tektronix TN503 function
generator that is set to produce a square pulse at
approximately 10-3 Hz with an amplitude of 10
volts. The function generator causes the power
supply to switch on and off periodically every 500
seconds.

The rod was covered with foam tubing and
bubble wrap to keep heat loss from conduction
and convection to a minimum. The two
thermistors, which are placed at x1 and x2 which
are 15.1 ± 0.02cm apart, are set into the rod and
sealed in place with epoxy. The thermistors are
connected in series with a known reference
resistor of 15 kΩ and a 1.5 volt dry cell battery is
used as a constant source of voltage. The
reference resistor allows for the calculation of the
current that flows through the thermistors and
allows for the calculation of the temperature
through a Hewlett Packard 3421A data acquisition
unit.

Data was collected with a computer
program written in LabVIEW 4.1. The program
reads the voltages from the data acquisition unit
and changes these voltages to temperatures and
then plots the data on the computer so that the
data from both thermistors can be seen.3

Two sets of data were taken for this
experiment. The first set of data only contained
about 600 data points. This was too few to use for
an accurate analysis using a Fourier
transformation in Igor Pro. However, it was
possible to use this data to find the driving
frequency needed for the next data set to give 256
data points per wavelength, since the Fast Fourier
analysis algorithm used by Igor Pro requires 2n

points. The driving frequency set to 0.74*10-3 Hz
and a data set of approximately 1900 data points

was recorded. Much of the beginning data was
eliminated so that only data taken after the heating
of the system had reached equilibrium was used
for analysis. Graphing these data points allows the
data to be narrowed down until only 512 points
remained, enough to use Fourier analysis,
provided an integral number of wavelengths.
Matching the end of the wave with its beginning
was important to getting useful results since
having this integral number of wavelengths keeps
the Fourier analysis from generating too much
error from compensating for a change in
amplitude while making calculations.

The Fourier transformation function in
Igor Pro was used to find the imaginary and real
parts for the set of temperature data. With this, the
magnitude of the heat wave and the phase
difference between the heat waves was found and
recorded for the near and far thermistors.

ANALYSIS AND INTERPERETATION

The second set of data was collected with
a set frequency f of 0.74*10-3 Hz and showed the
near and far thermistors temperatures in figure 1.
The collected data takes about 3 full wavelengths
to reach equilibrium and a regular wave pattern.

FIG.1. Data collected which shows the temperature as a
function of time of the near thermistor (top) and the far
thermistor (bottom).

Looking at both sets of data together makes it
possible see the phase difference of the two
waves. Because data taken for our analysis before
the system reached an equilibrium position is
unusable we must eliminate data points in the
graph before equilibrium is reached. Only 512
points are kept since it is a value of 2n that is
useable for Fourier analysis. The selected data
points used for the analysis can be seen in figure
2.
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FIG.2. Graph of points used for Fourier analysis for the
near thermistor (top) and the far thermistor (bottom).

These points were selected so that an integral
number of wavelengths are presented so that any
analysis done is more accurate since the wave can
be approximated as being continuous and
wrapping back on itself.

Igor Pro was used to do Fourier analysis
on the data for the near and far thermistors, which
gave real and imaginary components for the wave
amplitudes as a function of frequency. The
magnitude and phase of the near and far
thermistors was found using the real and
imaginary parts calculated through Fourier
analysis. After finding these values the signs of
the phases were checked to make sure the values
were in the correct quadrant.

Only the data for the first and third
harmonic is able to be used to calculate the value
of the thermal conductivity. This is due to the use
of the square heat wave applied. Because of this
only the odd harmonics of the wave are
significant for analysis. Only these two harmonics
are usable since they are the only ones that have
corresponding magnitudes large enough for a
match in the peaks of the harmonics to be seen.

Using equation 13 and knowing the values
of ω, s, ρ, A1/A2, x1 - x2, and φ for the 1st and 3rd

harmonics respectively (see Table 1 below) the
value of k is calculated.

1st Harmonic 3rd Harmonic
ω 47.57*10-4 Hz 47.57*10-4 Hz

s 368 J/(kg*˚C) 368 J/(kg*˚C)

ρ 8500 kg/m3 8500 kg/m3

A1/A2 0.36 6.21
x1 - x2 0.151 m 0.151 m

φ 1.25 rads 1.71 rads

k 133 W/(m*˚K) 163 W/(m*˚K)

TABLE.1. Values used in equation 13 to calculate the
thermal conductivity of the brass rod for the 1st and 3rd

harmonics where ω is the driving frequency of the wave and
is found from the wave period, s is the specific heat of brass,
ρ is the density of brass, A1/A2 is the ratio of the amplitudes,
x1 - x2 is the distance between the thermistors, and φ is the
phase difference calculated between thermistors. Values for
s and ρ come from the book      Tables of Physical and
Chemical  Constants     (ref 4).

CONCLUSIONS

The thermal conductivity of a metal rod
can be measured by applying a heat pulse to one
end of the rod while leaving the other end at room
temperature. Measuring the temperature at two
points on the rod as a function of time and using
Fourier analysis, we are able to calculate the
thermal conductivity k by using Angstrom’s
method.  Using equation 13 from above we are
able to calculate the thermal conductivity of the
brass rod to be 133 ± 91 W/(m*˚K) and 163 ± 41
W/(m*˚K) for the 1st and 3rd harmonic of the heat
wave respectively. Comparing these values to the
accepted value of 128 W/(m*˚K)5 we find a
percent difference of 4% and 27% for the 1st and
3rd harmonic respectively. The value for k
calculated from the 3 rd harmonic is much higher
than the accepted value, but is still within
experimental error. The value calculated from the
1st harmonic is much closer to the accepted value.
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