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The three major forces that affect the baseball while in flight are the
Magnus force, drag force, and gravity.  The Magnus force was measured
in the wind tunnel to be (8±2) grams, and then calculated to be (5±.1)
grams.  The drag force is also calculable; however, it varies with the drag
coefficient.  With the wind tunnel experiments the revolutions per minute
of the baseball (1206 rpm with the wind, 1462 rpm without wind), and the
simulated velocities (0 mph, and 23±5 mph), could to be measured.  The
rpm’s decreased by 21% when the air flow was turned on in the tunnel.
This was due to the increase of velocity, which increases the drag force.
The simulation data showed that the deflection was dependent on all three
variables: the angular and linear velocities, and the release angle.  The
simulation also showed that the three different forces (Magnus force, drag
force, and gravity) all have an affect on the flight of a baseball.

INTRODUCTION
A number of phenomena govern a thrown

baseball’s flight that vectorially add together to
give a final flight path.  The variables that are
controllable are the angular velocity, linear
velocity, and the angle the rotational axis makes
with the ground. The various forces that control
the baseball are the Magnus force, Bernoulli
effect, boundary layer and Reynolds number (R),
drag crisis, drag coefficient (Cd), drag force (Fd),
gravity, string height (roughness), and barometric
pressure.

The Magnus force was named after the
German engineer G. Magnus, who gave the first
experimentally proven explanation for the lateral
deflection of a spinning ball (published 1853) 1.

Magnus used the Bernoulli effect in his theory on
the spinning ball

A simple description of the effects on a
thrown baseball was stated by Robert K. Adair4,
he predicts that when a right-handed pitcher
throws a wide, breaking curveball to the plate,
such that it rotates at a rate of 1800 rpm about a
vertical axis and travels at a mean velocity of 70
mph, the side toward third base (right-hand side of
the ball relative to the pitcher) is traveling forward
at an average speed of about 80-mph while the
side toward first base is only moving at 60 mph.
In Newton’s description, the larger drag on the
third-base side translates to a larger force or a
lower pressure and the ball swerves toward the
first base side of home plate 4.  This was the
simplest explanation of what happened to a
curveball, but was not completely correct.

Figure 1.  This is a very simple diagram of the Magnus effect.  The ball on
the right is spinning and the rotational direction makes the top of the ball
moving in the same direction as the wind.  Therefore, that part of the ball is
moving faster creating a lower pressure zone that creates a force in the up
direction, called the Magnus force (figure is from Adair) 7.

The explanation that Magnus2 gave for the
curvature of a ball was not entirely correct either.
He argued that: “A spinning ball induces in the air
around it a kind of whirlpool of air in addition to
the motion of air past the ball as the ball flies
through the air.” 7 (see Fig. 1).  This circulating air
slows down the flow of air past the ball on one
side, and speeds it up on the other side.  In
accordance with Bernoulli’s theorem, when the
kinetic energy of a fluid increases, its pressure
decreases.  Thus, the side of the ball on which the
air speed is lower experiences a higher pressure
than the other side.  The resulting pressure and
force imbalance causes the ball to move laterally
toward the low-pressure (high-speed) side1.

In 1959, Briggs2 explained more precisely:
the spinning motion only affects a thin layer of air
next to the surface.  However, the motion
imparted to this layer affects the manner in which
the flow separates from the surface in the rear.
This in turn affects the general flow field about
the body and consequently the pressure in
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accordance with the Bernoulli relationship.  The
Magnus effect arises when the flow follows
farther around the curved surface on the side
travelling with the wind than on the side

Figure 2. Showing airflow past the spinning ball in wind tunnel.  Wind
coming from right at 60 ft/sec. Ball is spinning 1000 rpm, counter-
clockwise, about a horizontal axis at right angles to the wind.  The Magnus
force is upward. (Fig. is from reference 2)

travelling against the wind (see Fig. 2) 2 .  This
phenomena is influenced by the conditions in the
thin layer next to the body, known as the
boundary layer.  There may arise certain
anomalies in the force if the spin of the body
introduces anomalies in the layer, such as making
the flow turbulent on one side and not the other;
this creates the Magnus force2.

The Magnus force creates a lift force or a
lateral force (FL), which is calculated using1

equation (1),  FL=2Kv2ω, where K is a constant
depending on the seams orientation, v is the
velocity of the ball, and ω is the angular velocity.

The Reynolds number (R), for a baseball
is calculated using R=vd/υ.  Where the diameter
(d) of the baseball is (7.32 cm), v is the velocity
relative to air, and υ is the kinematic viscosity of
air (about 0.000015 m2/s at 20 C) 6.  So the greater
the velocity becomes the greater the Reynolds
number.  A drag crisis occurs when the laminar
flow of air in a boundary layer near the ball
begins to separate and becomes turbulent 9.  The
effect that the turbulence in the boundary layer
causes will actually reduce the size of the
turbulent wake behind the ball, and reduce the
drag force6. The drag crisis produces a regime
where the aerodynamic drag force actually
decreases as the velocity increases9.

The drag force is calculated6 in terms of
the drag coefficient using Fd=-(1/2)(ρCdAv2),
where ρ is the fluid density of air (1.29 kg/m3), A
is the cross-sectional area of a baseball, v is the
velocity relative to air, and Cd is the drag
coefficient6 of a baseball (Cd=0.29).
Experimentally, the rougher the ball is the lower
the Reynolds number needs to be for the drag
reduction to occur.  These effects define the

motions of a rotating baseball, like a fastball or a
curveball, but the deflection for a knuckleball
does not happen same way.

The knuckleball is thrown with very little
rotation, but the drag crisis does occur because of
the seams.  When the ball is thrown the seams can
catch the air on one side causing the transition to
turbulent, and on the other side the air continues
around the boundary layer.  The turbulence
reduces the drag force, so there will be an
asymmetric drag force on the ball causing the ball
to move in the direction of the smaller drag force7.

The theory behind our simulation uses
equations of motion for a thrown baseball.  The
first set of equations deals with the change in
position of the baseball.  These equations
(vx=dx/dt, vy=dy/dt, and vz=dz/dt) are used to
calculate the change in position in the x, y, and z
directions.  The second set of equations will
calculate the change in velocities.  Equation (2)
calculates the change in the velocity (v) in the x
direction:
dv x

dt
= −

B2

m
vvx +

So

m
ω yvz −ω zvy( )                         (2)

The first term of the equation represents the drag
force in the x-direction.  The second part of the
equation calculates the Magnus force in the x-
direction, where B2 is proportional to the Magnus
force which is about one-third the weight of the
baseball 5, m = 149 g, (S0/m)≈4.1x10-4 and is
unitless5, v is the speed of the ball relative to the
air, and v x, v y and vz were previously calculated 5.
The Magnus force or lift force of equation 1 can
be related to the second parts of equations (2, 3,
and 4) by the equation   

r 
F M ∝

r 
ω ×

r 
v .  The

rotational velocities (ω) in their respective
directions were obtained with the basic physics:

Where θ is the release angle that controls the
rotational axis of the baseball.

Equation (3) calculates the change in
velocity in the y direction:
dv y

dt
= −

B2

m
vvy +

So

m
(ω zυ x ) − g                            (3)

Air flow following
the curve surface
around further,
because it is
travelling with the
wind.

ωy

ωz

θ

  

r 
ω = ˆ x ω x + ˆ y ω y + ˆ z ω z ⇒ ω ˆ ω 

where

ω x t[ ] = 0,  ω y t[ ] = ω cosθ ,  ω z t[ ] = ω sinθ
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where g represents the acceleration of gravity, and
the other variables are described above. The first
term of the equation represents the drag force in
the y-direction.  The second term of the equation
calculates the Magnus force in the y-direction.
The final equation (4) in this set, calculates the
change in the velocity in the z direction and is
analogous to equation (3):
dv z

dt
= −

B2

m
vvz +

So

m
(ω yυx )                            (4)

Those were the equations used for the
fastballs and curveballs, but for the knuckleball
equation (4) is changed to another equation5 by
adding Al to it, where Al is:

Al = 0.5 sin 4φ( ) − 0.25sin 8φ( ) + 0.08sin 12φ( ) − 0.025sin 16φ( )[ ]g
where the rotational velocity is calculated using
the equation ω=φ/dt and φ is the rotational angle
that the ball goes through on its vertical axis,
during its flight.

A simple insight to the measurements
taken in the simulation with no spin or drag force
on the ball can be obtained with basic physics.
The vertical deflection of the ball with no forces
besides gravity and an initial velocity follows a
1/v2  dependence.

EXPERIMENT
Using C++ in Code Warrior  allowed data

to be taken in the simulation.  A sample of the
Curveballs and Fastballs simulation is shown in
Fig. 3.  The simulation allows the user to change
the linear velocity, angular velocity, and the
release angle, which is the angle the rotational
axis makes to the ground.  Thus, all possible
fastball and curveball pitches are allowed.

 Figure 3.  This data is with a pitch of 90 mph in the (x) direction, spinning
at 30 rev/s, and a release angle (θ) of 90°.  The pitch traveled from left to
right.  The blue line represents the vertical deflection (y), which is due to
gravity and is in xy plane.  The red line represents the horizontal (z)
deflection, which is due to the Magnus force and is in the xz plane.  The
red tick marks and numbers on the left side represent the horizontal
distance in feet, and the blue tick marks and numbers on the right side
represent the vertical distance in feet.  The horizontal deflection was 15
inches (0.388 meters), and the vertical deflection was 3 feet 7 inches (1.088
meters).

The knuckleball simulation has the same
changeable variables (parameters) as the other
simulation.  However, it produces a much
different pitch as shown in (Fig. 4).

Figure 4. This is a screen shot of the Knuckleballs simulation with a pitch
of 65 mph in the (x) direction, spinning at 0.6 rev/s, and a release angle (θ)
of 90.  The horizontal deflection ended up 8 inches (0.222 meters) The
vertical deflection was 6 feet 10 inches (2.082 meters).

The computer simulation allowed the
deflections of the baseball to be observed and
analyzed.  With the drag force, Magnus force, and
gravity being integrated by the simulation, the
data gave a lot of information on the forces
affecting the ball.  The horizontal deflection, of a
curveball, was investigated with respect to ω, and
plotted (see Fig. 6). This graph showed that the
greater the angular velocity became the greater the
horizontal deflection and that, they are
proportional to each other: z ∝ ω 1.
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The baseball was thrown with a rotational
 angle of 90 degrees from the ground, and 
 with an initial velocity of 85 mph.

Figure 6.  This is a log-log plot of Horizontal deflection (z) versus ω
(rev/sec).  The ball was thrown with a rotational axis of 90°, and with an
initial velocity of 85 mph, both were kept constant.

Another relationship that was investigated was a
horizontal deflection, of a curveball, with respect
to velocity, and plotted (see Fig. 7).
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The baseball was thrown with a rotational
 angle of 90 degrees from the ground, and 
 with 30 revolutions per second.

Figure 7. This is log-log plot of Horizontal deflection (z) versus velocity
(V).  The ball was thrown with a rotational axis of 90°, and with 30
(rev/sec) angular velocity, both were kept constant.

This graph showed that the greater the velocity
became the less the horizontal deflection was, and
that they are inversely proportional to each other:
z ∝ ω −1 .

In addition to the simulation, a baseball
was drilled then placed in a wind tunnel.  An 1/8-
inch thick rod was then pushed through supports,
spacers and the baseball and extended out of the
wind tunnel where it was then hooked to a hand
held fan.  The fan was suspended from a ring
stand with a spring, so the fan would not retard
the ball from any deflections (see Fig. 5).

Figure 5.  This is a simple diagram of the wind tunnel setup seen from
above.  The air moves from right to left and the ball rotates counter clock-
wise when looking at it from the fan’s side.

The measurements done with a wind
tunnel system with the rotational rate of the
baseball fixed then measured and the amount of
lift the baseball created.  The measurement of the
rotational rate was done with a stroboscope
connected to an oscilloscope.  This measured the
number of pulses per second (Hz), which was the
rotational rate of the ball per second.  The
measurement was taken, with the air flowing and
without the air flowing, to find the affect that the
airflow had on the angular velocity (ω) of the
baseball. The revolutions per minute (rpm) was
calculated by multiplying the pulses per second by
60.  The two different results were then compared
to find the constant (k) that was the difference

between the rotation rates.  This was done by
using the equation τ=kω, where the torque (τ)
provided by the fan was assumed to be constant
and it produced an ω that depended on the drag
force, and came out with equation (5).
k v≥ 0 = kv= 0 + ∆k ⇒
kv≥ 0

k v= 0

=1 +
∆k

k v= 0

=
ω v =0

ω v≥ 0

=
1462 ± 2( )rpm

1206 ± 2( )rpm

  (5)

Where ωv>0 and ωv=0are the revolutions
respectively.

The lift of the baseball was then measured.
The lift system was setup so a small film canister
could be hooked on to it, so masses could be
placed into it.  The system was equalized with the
canister attached to it.  The fans were then turned
on both in the wind tunnel and for the baseball.
The ball then lifted from equilibrium, and  the
addition of masses to the canister brought it back
down to equilibrium.  The masses were then
weighted and that was considered the lift force
(FL) of the system.  The lift force was then
calculated with equation 1.

ANALYSIS AND INTERPRETATION
The wind tunnel gave two important

numbers, the first was the change in rotational
velocity, and the second was the lift force (FL).
The first was calculated using equation (5), that
∆k/k=18%.  This 18% increase in the drag force
result was expected, because the addition of the
airflow simulates the ball being thrown at a
certain velocity.  In this tunnel, the velocity was
(23±5) mph.  As explained before the drag crisis
occurs when the boundary layer becomes
turbulent, which happens as the velocity of the
object increases.  A change from 0 mph to (23±5)
mph is a large increase in velocity.  Therefore, the
increase in rpm’s and a decrease in drag force
with the airflow turned on verified this predicted
trend of the theory.

The second result taken from the wind
tunnel was the lift force (FL).  This was measured
with the lift measurement system and weights
being added to the system to keep it equalized.
The measured lift force was (8±2) grams.  The lift
force was calculated using equation 1 to be FL
=0.0046N or (5±.1) g.  The measured value was
quite close to the calculated lift force.  This force
is noticeable when a fastball is thrown and the lift
is upward, as in the wind tunnel.  The ball does
not

Baseball on lift
measurement
system rotating
counter clock-wise

Hand-held
fan
suspended by
Spring

Air flow direction
at 10 m/s
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Figure 8.  This is a screen shot of the Curveballs and Fastballs simulation
with a pitch of 95 mph in the (x) direction, and was spinning at 30 rev/s,
then at 0 rev/s, finally at -30 rev/s, top trace to bottom trace respectively.
The pitch had a release angle (θ) of 0°. The horizontal deflection was zero
for all three pitches, and the vertical deflection was 2 feet 2 inches (0.675
meters) for the fastball, and for the non-rotating ball the deflection was 3
feet 2 inches (0.977 meters), for the curveball the deflection was 4 feet 2
inches (1.28 meters).

drop as much, as it would with no spin (see Fig.
8).  This figure shows how the Magnus force
affects the baseball.  With the fastball, which was
simulated in the wind tunnel, the Magnus force is
in the up direction.  With the curveball, it is in the
down direction.  The fastball then seems to rise,
but it does not.  It gives the image of rising
because our mind is conditioned to the expected
drop due to gravity, but a fastball resists the pull
of gravity slightly.  The curveball has an added
force in the down direction, so it deflects a greater
distance.

The spin is the dominate variable in the
deflection of the baseball.  Therefore the greater
the revolutions the greater the deflection will
become.  As Fig. 6 shows the deflection of the
baseball is proportional to the ω. This means the
Magnus effect increases with the amount of
revolutions that the ball does, and from Fig. 2 the
boundary layer is blown away and becomes
turbulent at lower speeds making the drag force
less.  However, the deflection is inversely
proportional of the velocity (shown in Fig 7), it is
dependent on it because of the time scale.  The
faster the ball is thrown the less time the Magnus
force has to effect it and the drag force on the ball
is also less.  Therefore the ball is horizontaly and
vertically deflected less.  The reasoning behind
this is the ball spends less time in the measured
area with greater speed, and the displacement is
proportional to the time2.

With the knuckleball, the deflections are
rather chaotic.  A slight variation in the wind, or a
seam being raised more on one side can
completely change the deflection of the ball
during its flight.  As Fig. 4 shows the ball can go

one way and then go the oppisite way in the same
pitch.  Therefore there can not be any catagorial
situations for a knuckleball, because nobody
knows which way the ball is going to go.

CONCLUSION
The simulation data showed that the

deflection was dependent on all three variables,
the angular and linear velocities, and the release
angle.  The simulation also showed that the three
different forces (Magnus force, drag force, and
gravity) all have an affect on the flight of a
baseball.  In the case of the Magnus force it is
measurable in the lift force or lateral force, which
was measured in the wind tunnel to be (8±2)
grams, and then calculated to be (5±.1) grams.
The drag force is also calculable, however it
varies with the drag coefficient.  The wind tunnel
also allowed the change in the revolutions per
minute (1206±2 rpm with the wind, 1462±2 rpm
without wind), and the simulated velocities (0
mph, and 23±5 mph), to be measured.   The rpm’s
decreased by 21% when the air flow was turned
on in the tunnel.  This was due to the increase of
velocity, which decreases the drag force because
of the boundary layer being blown away.
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