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This experiment experimentally measures the Hall coefficient of a
Germanium sample, and the number of carriers of electric current per unit
volume in that sample using formulae derived within the theory of the
paper.  The Hall coefficient for the Germanium sample was found to be
-(1.907+0.071)*10-2 m3/C, and the number of carriers was found to be
3.86*1020+0.14*1020 /m3.  The Hall coefficient, and the density of free
carriers for germanium has been previously found to be –8*10-2 m3/C,4 and
1.0*1021 electrons/m3 respectively6.  These results, in particular the sign of
the Hall coefficient show that conduction in Germanium is in fact
performed by electrons, and not holes as in many other semi-conductors.
The results of this experiment also verify previously published results, as
both sets of values are of the same order.

INTRODUCTION
In 1879, Hall observed that on placing a

current carrying conductor perpendicular to a
magnetic field, a voltage is observed
perpendicular to both the magnetic field and the
current.  It was puzzling that the charge carriers,
which were assumed to be electrons, experienced
a sideways force opposite to what was expected.
This was later explained by the band theory of
solids.4

The Hall Effect has been important in the
study of the mechanism of conduction in
semiconductors because both the mobility and
concentration of the charge carriers may be
measured, as opposed to only the conductivity
with conductivity experiments.

THEORY
Assuming that electrons, with charge e are

the current carriers, and they have a drift velocity,
vd in the direction of the applied electric field,
they experience a force due to a
transverse magnetic field, B given by:

F = −evdB …1

where the force, drift velocity, and the magnetic
field are perpendicular to each other, and the
minus sign comes from the negative charge of the
electron (figure 1).  The sideways force, called the
Lorentz Force, causes the electrons to deflect
toward one face of the conductor, due to which
arises a transverse electric field, which is
measured as the Hall Voltage.  At thermal
equilibrium, when the Lorentz Force exactly
matches the force due to the electric field (the
Hall Voltage), we have:

−evdB = − eEH …2

where EH is the Hall Voltage, B is the magnetic
field and e is the charge of an electron.
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Figure 1: Voltage components for conduction by electrons
in a magnetic field, where w is the width of the conductor.

To gain a good understanding of the Hall
Effect, a classical particle view is beneficial.  For
the specific case of Germanium or any other semi-
conductor, the charge carriers have a high
probability of being at or around the point of
injection of impurities, giving the carriers a
definite location.  Thus, using the classical
particle treatment, the drift velocity, vd, used in
equation 1, can be used to find the current density
in a semi-conductor.  Assuming that the collisions
that an electron undergoes are
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completely random, the current density, j is:

j = −envd …3

where e is the charge of an electron, and n is the
number of electrons per unit volume.  The drift
velocity used in equation 1 is not a very
convenient parameter.  Using equations 2 and 3,
we can derive a convenient expression for the
Hall Voltage in terms of the current density.

RH =
EH

jB
= (

VH

I
)

t

B
…4

where VH is the average Hall Voltage, or simply
the Hall Voltage divided by the width across
which the voltage was measured (the width of the
sample).  The other parameters are given sense by
figure 1, and previous equations.

The applied electric field, and the
transverse electric field created by the magnetic
field give a resultant electric field which is not
parallel to the current.  The angle θ, which
separates the current from the resultant electric
field (figure 1), enables the derivation of a
formula for the Hall Coefficient, already stated in
equation 4, in terms of the charge of the carrier,
and the charge density.  But in fact equation 4 is a
very simplified view of the system which involves
many simplifying assumptions regarding the
collisions of the electrons.  In reality, the
probability of collision depends in a complicated
way on both the initial and final states.6  When
this is accounted for the equation reduces to:

RH =
3π
8

1

n(−e)
…5

Some Hall Coefficients are found to be
positive, conflicting with the electron theory of
conduction.  The band theory of solids is essential
to explain the deflection of current carriers in
semi-conductors like Germanium.  When the Hall
Effect was first observed, the apparent opposite
deflection of the electrons, which were considered
the only current carriers, was puzzling.  This was
resolved by the band theory of solids in the early
part of this century.  Valence electrons occupy a
complete set/band of states that spans a finite
range of energies; therefore no electron may be
moved to any other valence state without violating
Pauli’s Exclusion Principle, so valence electrons
are rigid and can carry no current.  In metals, the
bands overlap and so electrons move freely from
the upper valence bands to the lower conduction
bands and thus conduct.  When an electron from a
filled valence band is removed, there is now a
hole in the valence band for other electrons to
move into, and they may now conduct electricity

by moving into the hole.  It appears like the hole
is moving in the opposite direction of the
electrons and thus, positive charges or holes are
said to carry the current.

Holes may be introduced into a
germanium sample by careful injection of
impurities, the process called doping.  This sheds
light on the possibility of positive current carriers,
and thus some Hall Coefficient are positive,
because of conduction by positive holes in the
valence bands.  Equation 5 may be modified to
include a positive charge instead of the –e in the
denominator.  Thus, the sign of the Hall
Coefficient may be used to discover the nature of
the charge carriers.

Experimental Setup & Procedure
To calculate the Hall Coefficient of

Germanium, the power supply (Hewlett Packard
6216C) sends a current through the Ge sample,
while the permanent magnet provides a strong
magnetic field perpendicular to the direction of
the current.  A voltmeter (Keithley 197
Autoranging Microvolt DMM) is connected
perpendicular to both, the direction of flow of the
current and the magnetic field.  This is used to
make observations of the Hall Voltage, An
ammeter (Tektronix CDM250 Digital Multimeter)
is connected to the DC power supply to make
measurements of current flowing through the
germanium sample.  A traveling Microscope
(Gaertner Scientific Corporation), and a gauss
meter (Applied Magnetics Laboratories) complete
the equipment list.

The DC power supply has control over the
current passing through the sample.  The current
may be varied by directly changing the current, or
by varying the voltage that drives the current.
The instruments are very sensitive to change in
either parameter, and extreme care must be taken
to attain the desired level of current through the
Ge sample.  Once a desired current has been
achieved, a transverse voltage reading is made at
the voltmeter.  The desired current was attained in
different runs of the experiment, by alternately
keeping the current and the voltage constant, and
varying the other parameter.

First, the experiment was conducted
without any magnetic field.  Theoretically, there
should be no transverse voltage as current carriers
would not have deflected.  Start the experiment at
15 mA, and make readings of the transverse
voltage for successive decrements in the current,
down to 1mA, or even lower.  Then slowly
increase the current back to 15 mA once again and
check for reproducibility of the data.  The
experiment is repeated under the influence of the
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known magnetic field.  The field is then inverted
and the experiment redone yet again.

The strength of the magnetic field and the
dimensions of the Ge sample are the other
measurements required.  To measure the strength
of the magnetic field, the probe of the Gauss
meter is introduced exactly in the middle of the
space between the two poles, and a series of
readings are made, because the field is very
variable.  The average value of the readings is
used in the determination of the Hall Coefficient.
The dimensions of the Ge sample are measured
using a traveling microscope.  Only the thickness
of the sample is required in the determination of
the Hall Coefficient.  Nevertheless, measurements
were made of all the dimensions of the sample.
Since the Ge sample is set within a frame and
should not be disturbed, its thickness is measured
with a traveling microscope.  The front and back
end of the sample are focussed one after the other
and the distance moved by the calipers recorded.
Using simple trigonometric functions, the
thickness is easily estimated.

Data, Error, Error Propagation & Analysis
The magnetic field was measured as

(171.7+1.3)*10-3 Tesla, which is the SI units for
magnetic fields.  A conversion factor of 104 was
used to convert between Gauss and Tesla.  The
dimensions of the Ge sample were measured to be
(4843.3+5.8)*10-6 m (length), (483.0+2.6)*10-5 m
(width), and (1815.0+6.5)*10-6 m (thickness).

-60

-50

-40

-30

-20

-10

0

V
ol

ta
ge

 (
m

ill
iV

ol
ts

)

1412108642
Current (milliAmps)

B=0

B=((171.7+1.3)e-3) Tesla

B=((-171.7+1.3)e-3) Tesla

Graph 1: Transverse (Hall) Voltage plotted against the
longitudinal current, uncorrected for systematic errors.  The
opaque squares and circles are voltages for opposite
orientations of the magnetic field, while the crosses are
voltages in the presence of no magnetic field.

Systematic errors, probably due to faulty
calibration, causes the voltage recorded without
the magnetic field to be consistently non-zero.
The transverse voltage should be zero in the
absence of a magnetic field because none of the
charge carriers are deflected, and hence no Hall
Voltage can be set up.  The Hall Voltage readings

with the magnetic field are thus also
systematically erred by the same amount.
Therefore, in graph 1, the voltage is non-zero
even for a zero magnetic field.  In graph 1, the
error bars are constant values.  The negative B
field merely signifies an opposite orientation of
north and south poles.

To correct for the error, the voltage
readings in the absence of any magnetic field are
systematically forced to zero, and adjustments are
accordingly made to the Hall Voltage readings.
The values of the zero magnetic field voltages are
subtracted from both sets of Hall voltages.  To
calculate the Hall Coefficient of germanium, we
look to equation 4.  One method that can be
employed to measure the Hall Coefficient of
germanium is computing the Hall Coefficient for
each of the values of current, and then using the
mean and standard deviation of all those values.
But there is a more elegant method.  The factor
VH/I is the slope of the plot of the current and the
Hall Voltage.  Therefore, a line can be fitted to the
values of the Hall Voltage at various values of
current, and the slope of this line may be used,
along with the error in fit (standard deviation), to
calculate the Hall Coefficient (graph 2).  The
measurement of the magnetic field, and the
thickness of the germanium sample is conducted
as described in the procedure, and their errors are
simply a standard deviation of a series of
observations.  These steps accounts for all the
random error involved in the observations.
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Graph 2: Current plotted against voltage, corrected for
systematic error, such that there is no voltage reading for
B=0.  Straight lines are fitted to the data.  The markers are
consistent with graph 1.

The slope of both the lines (current plotted against
Hall voltage) for the different orientations of the
magnetic field, are similar.  Since the values are
so consistent, the average value of the two slopes
(VH/I) is used and the errors of the individual line
fits also propagate as averages, since this error is
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greater than simply the standard deviation of the
two consistent slopes.  The Hall Coefficient of
germanium can thus be calculated:

RH = −1.907*10 −2 ± 0.071*10 −2 m3

C
…6

On observing the sign of the Hall
Coefficient of germanium, it can be concluded
that the charge carriers in Ge are in fact electrons.
The above value compares favorably with –8*10-2

m3/C, reported by Lerner et.al.4  The negative sign
may arise also imply due to the connection of the
voltmeter.  Keeping track of the magnetic fields
therefore becomes very important.

Further, the density of the electrons is
calculated using equation 5.  The Hall Coefficient
for germanium is known along with its associated
errors,  Therefore, the density of conducting
electrons in Ge is:

n = 3.861*1020 ± 0.14*10 20electrons/m 3 …7

The density of the current carriers is also
consistent with values reported earlier.  Shockely6

reported a value of 1.0*1021 electrons/m3, and
Lerner et.al4 reported a value of the apparent
number of free electrons per atom as 1.7*10-9.  To
convert to the units used in this paper,
(electrons/m3) we have to find the number of
atoms per unit volume for Ge.  We find that there
are 4.4*1028 atoms/m3, and therefore, the density
of free electrons is: 4.4*1028  atoms/m3 * 1.7*10-9

electrons/atom = 7.48*1019 electrons/m3.

Conclusion
The Hall Effect is important because it

enables us to make measures of mobility and
concentration, and gives insight into the
mechanism of conductivity in semi-conductors.
The Hall Coefficient and the density of carriers in
Ge are well known quantities, and have been
verified in this paper, given experimental
limitations, with values of the same order.  Also,
it is established that the primary charge carriers
are electrons in our sample of germanium.  In
some cases, conduction occurs in both the valence
bands and the conduction bands.  Therefore,
electrons and positive holes simultaneously carry
current, though in the Ge sample used in the
experiment, the electrons predominate over the
positive holes.

If the experiment were conducted at low
temperatures, and a variable magnetic field used,
the Quantum Hall Effect could have been
observed.  This is characterized by a step function
that arises when the resistivity of the sample is
plotted against the varying magnetic field.

_______________________________________
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