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Viscous torque, the resistance that a fluid offers to rotational motion, was
studied with air on a polished metallic sphere.  This experiment examines
whether the viscous torque, τ, is proportional to the angular velocity, ω, to
the first power, or to some higher power, by observing the rate of decay in
angular velocity of a rotating sphere, subject only to viscous torque.  Plots
of this decay rate on a semi-log scale produce linear results which show
that τ = −kω1.  Additional data taken with flags to increase torque
suggests that for greater area, the viscous torque is actually proportional to
the square of the angular velocity.  This experiment also examines the
relationship between the viscous coefficient, k, and the area, A, exposed to
viscous torque.  Data appear to suggest a linear relationship between k and
A, but results are insufficient to be conclusive.

INTRODUCTION

The resistance that a fluid offers to
movement is the fluid’s viscosity.  Viscosity
measures “the internal friction that arises when
there are velocity gradients within the system.”
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A common way to measure viscosity is to observe
it when the viscous force is equal and opposite to
the gravitational force on a falling sphere, as in a
falling sphere viscometer.
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  This method relates

viscosity to gravitation and demonstrates an
exponential decay in velocity when the viscous
force is proportional to the velocity.  This
proportionality is related to Stoke’s law of the
viscous force, f, on a sphere, which is  f = 6πηvr,
where η  is the viscosity of the fluid, r is the
radius of the sphere, and v is the constant velocity
with which it is falling.
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  However,

experimentation and observation can be made
easier if the linear motion is translated into
rotational motion.  This can be done using a
gyroscope consisting of a sphere rotating in air.
After being accelerated and then allowed to coast,
the relationship between angular velocity and
viscous torque can be easily observed.

If the viscous force is proportional to the
angular velocity to the first power, then the
angular velocity will decay exponentially in time.
The viscous coefficient, k , is said to relate
viscous torque to angular velocity in the following
manner, τ = −kω .  A new relationship can be
studied by adding areas of resistance, or rigid
flags, over which the viscous force is acting, to

increase drag.  The surface area added and the
viscous coefficient can be observed and plotted
against one another in an attempt to identify the
relationship between them.

THEORY

The viscous force is proportional to the object’s
velocity, v, giving the relationship F = −kv ,
where k is the viscous coefficient.  Relating this
equation to rotational motion results in

τ = −kω (1),
where τ  is the torque, ω  is the angular velocity.
Equating this equation to Newton’s 2nd law in
terms of rotational motion ( τ = Iα , where I is the
moment of inertia, and α  is the angular
acceleration) and then solving the differential
equation for the angular velocity yields

ω = ωoe
−λt (2).

where λ =k / I, which clearly shows how the
angular velocity decays exponentially under
viscous torque, at a rate proportional to the
viscous coefficient k.  Hence, -λ will be the slope
of a semi-log plot of angular velocity as it
decreases over time when subjected to a frictional
viscous torque.

Included in the viscous coefficient, k, are
dependencies on the radius, r, of the sphere, and
the viscosity, η , of the fluid, as presented in the
following equation

1

k = 6πηr (3).
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This equation shows that the viscous coefficient,
and hence λ  as well, is proportional to the
viscosity of the fluid, and is also linearly related
to the radius of the sphere for linear motion.

However, the above theory is assuming a
linear relationship between the viscous force and
the velocity.  If, for the case of rotational motion,
the viscous torque is proportional to any power of
the velocity higher than the first power, the
velocity’s decay would not be exponential.  As a
representative example of all powers higher than
1, the square of angular velocity is examined as
proportional to the viscous torque, known as the
Newtonian proportionality, as shown in the
following equation,

I
dω
dt

= −kω2 (4).

Following the same procedure of solving this
equation as was done to equation 11 yields

−
1

ω
+

1

ωo

= −
k

I
t (5),

which when plotted as 1/ω versus t would give a
straight line.

If the flags dominate in the second part of
the experiment, the angular velocity is expected to
decay at a rate greater than the linear Stoke’s
relationship depicted in equation 2.  With the
greater area exposed to the viscous torque, the
angular velocity is expected to decay at a rate
inversely proportional to time (t α 1 / ω), as
depicted by the Newtonian relationship in
equation 5.  Hence the linear relationship is
expected for a plot of 1 / ω versus t.

This experiment seeks to determine which
theory holds for the relationship between viscous
torque and angular velocity for the sphere with no
rigid flags, that is to what power of the angular
velocity is the viscous torque proportional.  Also,
for cases with increased area due to added flags,
this experiment seeks to determine if the
relationship between viscous torque and angular
velocity changes due to the flags, and if so, what
is the new relationship.  Also, the relationship
between the viscous torque and the area of the
flags is investigated.

PROCEDURE

A 10 cm, polished, solid metal sphere with a long
pole attached to it was used along with a base
mount built to hold the rotating sphere.  The base
mount is suited with an input valve through which
compressed gas can be pumped and releases under
the sphere to decrease the friction in rotation.

The angular velocity is determined by
using a He-Ne laser reflecting off the shiny
northern hemisphere where black stripes of
electrical tape periodically interrupt the reflection,
and from there reflect through a focusing convex
lens onto a phototransistor.  The Ne pressure that
floats the sphere is set to a desired level of 10 psi
so that the sphere is floating and is able to rotate
with only viscous friction.  The filter on the
HP5385A frequency counter is turned on to
ensure accuracy without external noise
contaminating the data, and the gate time on the
frequency counter is set at 1.0 second to help
ensure the frequency counter is reading properly.

The LabView 3.1 program Frictional
Torque is launched and the gate timer on the
program is set to record at 10 second intervals.
After spinning the pole protruding from the
sphere’s axis of rotation by hand up to a
maximum frequency of approximately 7 Hz, read
as 28 Hz on the frequency counter, and stabilizing
the pole to eliminate any wobble, the Frictional
Torque program was run to record data.  The
program was allowed to run for approximately
3000 seconds and stopped before any significant
wobble could be observed that might skew the
data.  The data was saved as a file and opened in
Igor for analysis.

To investigate the relationship between the
viscous coefficient and area, styrofoam flags of
increasing area are attached to the axis pole of the
sphere.   The goal is to obtain a plot of the viscous
coefficient verses the area to observe how the
viscous coefficient changes with respect to
increasing area.  After attaching each flag, the
process above was repeated and data was taken,
always making sure to stop the run before any
significant wobble appeared which could skew
data.  Due to the inconvenience of working
around the flags while spinning the pole, much
lower maximum frequencies were reached.  The
size of the flags used were (41.2±1.4)cm2,
(81.8±1.5)cm2, and (121.4±2.3)cm2.

DATA and ANALYSIS

To determine the relationship between the viscous
torque and the angular velocity data runs were
taken with no flags put on,.  The data was plotted
and analyzed using Igor Pro. A sample of the first
data run, as recorded by the computer program,
can be seen in Table 1.
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Table 1.  Sample of data from Run 1 (no
flags), with time in units of seconds, frequency
in units of Hz, and the error for every time
measurement being ±0.01%, and the error for
every frequency measurement being 1 part
over (40*the frequency value).

time_s frequency
47.94 6.03765
58.42 6.00346
68.94 5.9634
79.364 5.9239
89.833 5.88655
100.273 5.84698

The graph of frequency versus time of the Run 1’s
data is shown in Figure 1.

Figure 1.  Graph of Frequency versus Time
for Run 1 on a semi-log axis, with exponential
line fit.  The exponential line fit fits the data so
well that it runs right through the middle of
most of the data points and is hard to see.
Over-laid on this graph is a  graph of
Frequency versus Time for the run with two
flags, Flag 2, on a semi-log axis, with
exponential line fit for initial decay down to
an agular frequency ~1.7 s-1.  The exponential
line fits the initial decay data well, yet the data
shows some systematic deviation from the line
fit at the later time and lower frequency.

When plotted on a semi-log axis, the data for the
run without flags showed extreme linearity.  This
means that the data is well explained by an
exponential with constant decay rate.  An
exponential line fit was performed to test the
linearity, and to find a value for the slope of the
line which, as was shown in Figure 1, is the
viscous coefficient, λ.  Igor drew the fit line
according to the following equation

ω = k1 + k2e− k3t     (6),
which, if the variable k1  is forced to be zero on
Igor, fits the form from equation 2, withωo

corresponding to k2 , and, as previously stated, k3

being the slope of the line corresponding to λ , the
viscous coefficient.  The values for run 1 were k2

= 6.214±0.001, k3 = (5.882±0.004)*10
-4

.
Data was taken with each size of flag

attached to the pole.  The graph of the 2 Flag
frequency versus time can be found over-laid on
the graph of Run 1 in Figure 1.  This portion of
the experiment only investigates the relationship
between area and the viscous coefficient,  so for
each data run with a different flag area, λ was
determined by finding k3  in the same manner as it
was found for the earlier runs.  However, the
exponential fit was performed, with k0 forced to
zero, only on the initial decay, due to the data not
being very linear when looked at as a whole.  It is
believed that perhaps the initial decay for the
different runs will provide a consistent approach.

The line fit for Flag 2 produced a value of
k3= λ = (4.0±0.1)*10

-3
 s

-1
, for the initial decay

down to an angular frequency ~1.70 s
-1

.  It is
noted that the data line is not at all straight, and
also that there is a small amount systematic
deviation of the data from the exponential line fit
at later times and lower frequencies.  The data is
possibly starting to show behavior consistent with
theories other than that of angular velocity to the
first power.

As a further test of other theoretical
relationships, the data for 2 Flag was taken and a
plot was made of 1 / ω versus Time.  A linear line
fit was also then performed on the graph to
observe linearity predicted by equation 5.
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Figure 2.  Graph of 1 / ω  versus Time for the
run with two flags , 2 Flag , with a linear line
fit.  The data is well explained by the linear fit,
which implies the Newtonian form of the
viscous torque is applicable.

The data produced a graph that illustrates very
linear behavior between 1 / ω  and time.  This
supports the Newtonian theory depicted in
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equations 4 and 5, where the viscous torque is
proportional to the square of the angular velocity.
The linear fit produced a slope of
(1.320±0.002)*10

-3
 s

-2
.

CONCLUSIONS AND DISCUSSION

One can observe, record, and infer the relationship
between frictional viscous torque on and angular
velocity of a smooth, rotating sphere from a plot
of angular velocity, ω, versus time, t, and find it to
be consistent with the theory that the frictional
viscous torque is proportional to the angular
velocity to the first power.  One can also observe,
record, and plot the relationship between the
viscous coefficient , λ , and the area of flags
attached and find the relationship to be linear as
suspected from gathered data, although not
enough data was gathered in this experiment to
make a conclusive statement on the relationship.

The frictional viscous torque was found to
be proportional to the angular velocity to the first
power for the sphere rotating with no flags.  The
viscous coefficient for angular velocity with no
flags was found to be (6.0±0.2)*10

-4
 s

-1
.  The

viscous coefficients for the 1 Flag of area
(41.2±1.4) cm

2
 , the 2 Flag of area (81.8±1.5)

cm
2
, and the 3 Flag of area (121.4±2.3) cm

2
 were

found to be λ = (1.77±0.02)*10
-3

 s
-1

 , (4.0±0.1)10
-3

 s
-1

, and  (4.5±0.2)*10
 -3

 s
-1

, respectively.  The
graphs of these data did not appear very linear on
a semi-log plot for the data as a whole.  Yet when
only the initial decay was examined with a linear
fit for each of the 3 flag runs, that region could be
described by a line corresponding to an
exponential decay of the angular velocity, but the
data is much more consistent with a viscous
torque model that varies as the square of ω.

For further examination, the data for 2 Flag was
taken and a plot was made of 1 / ω versus Time to
test the Newtonian theory that holds viscous
torque to be proportional to the square of the
angular velocity.   A linear line fit was also then
performed on the graph, producing a slope of
(1.320±0.002)*10

-3
.  The data fit the line fit

extremely well, indicating that with additional
area added to increase drag, the viscous torque is
in fact proportional to the square of the angular
velocity, and hence the connection to area is an
open question.
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