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M.J. Feigenbaum has shown that all systems that exhibit a period doubling
route to chaos share a common scaling function, such that
δ = (V2 − V1) / (V3 − V2 ) = 4.669...   This value, δ , is called
"Feigenbaum's delta."  A current driven by a function generator, traveling
through a resistor, inductor, and a diode, acts as a driven nonlinear
electrical oscillator, and is shown to exhibit a period doubling route to
chaos.  This system was used to experimentally determine δ , producing
an average value of δ =5.0±1.0, consistent with the theoretical value.

INTRODUCTION
Humans exploring their world at first

tried to find the order in all physical systems;
however, there were some systems which
seemed completely unpredictable.  These
systems were labeled "random".  Upon closer
observation, it was found that many ordered
systems show extreme sensitivity to their initial
conditions, while seemingly random systems
exhibit a sort of order over time.  This state
somewhere in between periodic and completely
unpredictable was termed "chaos".1

In 1976 Mitchell Feigenbaum found a
theory that connected the many systems that
exhibit a period doubling route from the ordered
to chaotic states with a continuous change in
parameter values1.  Included in this category are
mechanical and chemical oscillators,  the
electrical oscillator that will be discussed in this
paper, and certain population models. These
systems all share the characteristic of
recursiveness, in which successive iterations of a
function rely on previous states of the function1.
He found a relationship in which the details of a
recursive equation become irrelevant, and out
falls a constant called "Feigenbaum's delta."
Feigenbaum's delta measures the ratio of the
distance between successive period doublings,
and has been found theoretically and
experimentally to be a constant value1-4.

It is one of the systems that exhibits
period doubling that is studied in this
experiment.  A driven, nonlinear, electric
oscillator shows bifurcation at critical values of

current frequency or amplitude4.  From this,
Feigenbaum's delta is found, and can be
compared to theoretical values.

THEORY
A system is considered simple if it is

predictable, that is, able to be modeled exactly
by a mathematical equation.  Between systems
that are simple and those that are completely
random are those called "chaotic."
Feigenbaum's theory of period doubling can be
used to describe the behavior of the electric
oscillator subjected to a periodic voltage.  At
some range of parameter values, for example,
the amplitude of the applied signal, the system
repeats itself every period of time T.  After
reaching a critical value for voltage, the system
begins to repeat itself every interval 2T.  It is at
this value that it is said that the period has
doubled.  This occurs repeatedly, requiring 4T,
8T, and 16T to reproduce itself as voltage
increases.  The value denoting the periodicity
will be defined as the number of units of time T
it takes for the system to repeat itself.  It is also
necessary to define transition values for the
bifurcation of the system.  These will be defined
with the equation2

Vn ≡ 2n T      (1).
A transition value Vn will denote the period to
which a system is moving.  For example, as the
system moves from period two to period four,
the transition value will be labeled V2.
Eventually, it is found that the period has
doubled ad infinitum, denoted V∞ , and at that
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point the behavior is no longer periodic, and is
considered chaotic.2

The universal behavior among all
systems that exhibit period doubling is as
follows:

δ n ≡
Vn+1 − Vn

Vn+2 − Vn+1

     (2),

δ n  converges to a constant value δ =
4.6692016...2.

EXPERIMENT
The experimental setup and procedure

are very similar to an experiment done
previously by Paul S. Linsay4.  The current
produced by a Hewlett Packard function
generator flows through an inductor in which L
= 0.1805±0.0001 mH, a resistor in which R =
4.513 ± 0.003 Ω, and a diode, which provides
the nonlinear element of the circuit.  The
function generator is connected to channel 1(x)
of a Hewlett Packard oscilloscope (model
54600B), and the voltage across the diode, V0, is
connected to channel 2(y).  The circuit diagram
is shown below, in Figure 1.

L = 0.1805±0.0001 mH

Diode IN4003

R =
4.513±0.003

ohms

Figure. 1.  Circuit diagram of setup for a driven nonlinear
electrical oscillator.  A function generator creates a current
that travels through a conductor, resistor, and a diode.

A sine function is applied to the system
by the function generator, which also controls
the variables--amplitude and frequency--that
change the behavior of the diode.  There are two
methods by which period doubling can be
observed--either by holding the amplitude
constant and increasing the frequency, or by
holding the frequency constant and increasing
the amplitude.  First, an amplitude/frequency
combination was found which clearly
demonstrated that the system was period one.
Next, it was determined which variable would
remain constant and which would change.  The
changing variable was be increased by fairly
large increments until it bifurcated, showing

period two.  Figure 2 below shows a phase
diagram of the circuit in period two.  The
variable was then decreased, and adjusted by
smaller increments to more precisely determine
the point at which period doubling occurred.  It
should be noted that it was impossible to
determine the precise value at which period
doubling occurred, and so it was necessary to
determine a range of values which could be
considered the critical range.  The value midway
between the high and low values was considered
the critical point, with one half of the difference
between high and low values considered the
error in the critical value.

Period 2

Figure 2.  Phase space diagram of V0 versus Vs at
Frequency = 180.0 KHz and Amplitude = 2.985 Vpp.
Period 2 is seen here as two peaks.

Period doubling was observed in this
manner from period one to two, two to four,
fourto eight, and sometimes eight to sixteen.  

The critical values determined from these
observations were used to find the value for  δ .
Also observed were periods of chaos, as well as
periodic regions within the chaos that had odd
periods and multiples of odd periods where 3T,
6T, and 5T were needed for the system to
reproduce itself.  These periods did not double
enough to determine a value for δ  inside the
chaotic regime, however.

An important consideration in
determining critical values of period doubling is
that, over time, peaks were observed to separate.
At values very near the critical value, the system
would spontaneously bifurcate from period one
to two over time.  It was suspected that this was
a thermal effect.  This was proven when the
system, which had just bifurcated, was cooled
with ice enclosed in plastic, and observed to
return to period one.   The separation was
observed over a period of six minutes, and the
peaks in a period two state were observed to
separate at an average rate of 0.057±0.002
V/min.  Because the effect is apparently linear, a
trial conducted at any time after the apparatus is
turned on should be accurate; however, a trial
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should be conducted as quickly as possible to
reduce the error caused by thermal effects.

ANALYSIS AND INTERPRETATION
Eight trials were conducted, collecting

the critical values for period 1 to period 8, and to
period 16 where possible.  Four of the trials were
completed with a constant amplitude, and four
with a constant frequency.  Sample data appears
for trial 5 below, in Table 1.

Period change Frequency (KHz)

V1 (1 - 2) 348.03±0.13

V2 (2 - 4) 678.24±0.26

V3 (4 - 8) 752.86±0.33

V4 (8 - 16) 766.95±0.69
Table I.  Critical values for Trial 5, in which Amplitude
remained constant, A = 4.000 Vpp.

with the values from Table I, Feigenbaum's delta
is calculated as shown below, using equation 2.

δ1−3 =
V2 − V1

V3 − V2

=
678.24 − 348.03

752.86 − 678.24
= 4.43

and δ 2-4 = 5.30, where δ 1-3 denotes that
critical values for the calculation were taken for
periods one, two, and four, and in δ 2-4 critical
values were taken for periods two, four, and
eight.  The same calculation was carried out for
the variable amplitude trials.  All of the data are
presented below, in Tables II and III.

Trial Number  δ 1-8

1 4.19±0.20

6 4.00±0.07

7 4.19±0.28

8 4.16±0.29

Table II.  Values of Feigenbaum's delta calculated for
trials in which frequency remained constant.  In all trials
frequency = 180.0 KHz, except for trial 7, in which
frequency = 200.0 KHz.

In addition, δ  for period doubling from
2-16 was calculated for trials 4 and 5 to be
4.91±0.44 and 5.30±0.39, respectively.

It can be seen in Table III that error
values for δ 2-16 are much higher than those for
δ 1-8.  This can be attributed to the fact that,
with successive bifurcations, it becomes much
more difficult to distinguish the point at which

the period has doubled.  Three of the four error
values in Table II are much higher than
expected; however, reasons for this are
unknown.

Trial Number δ 1-8

2 7.46±0.01

3 5.71±0.02

4 5.66±0.03

5 4.43±0.04
Table III.  Values for Feigenbaum's delta for trials in
which amplitude remained constant.  In trial 2, A = 4.618
Vpp, in trial 3 and 4, A = 4.000 Vpp, and in trial 5, A =
3.000 Vpp.

As seen in Table II and III, the values for
δ  are in agreement with one another, and fairly
close to the theoretical value δ =4.669.  Table
III shows that trial two did not yield consistent
value for δ , with the experimental value
δ =7.46±0.01, 60% higher than the theoretical
value.  The other trials yielded more consistent
results, with the value of trial 4, δ 2-16 in
excellent agreement with the theoretical value.
Averaging all trials together yields a value of
δ =5.0±1.0, which is consistent with the
published value.

CONCLUSION
Eight trials were run, in order to find

several values of Feigenbaum's delta.  All results
were on the same order of the theoretical value
δ =4.669.  Most were reasonably close to this
value, with one 60% higher than it should be,
and one falling within experimental error of the
theoretical value.  The average value for all eight
trials yields δ =5.0±1.0, which is consistent with
the published theoretical value.  In the future,
precautions could be taken to regulate the
temperature of the circuit in order to obtain more
accurate results.
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