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Modeling the viscous torque acting on a rotating object
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By drawing an analogy between linear and rotational dynamics, an
equation describing the viscous torque acting on an object rotating in a
fluid can be anticipated.  Stokes’ and Newton’s models of a viscous drag
force are commonly used to describe the damping force acting on an
object moving linearly through a fluid.  This experiment demonstrates that
these models can be extended to describe the viscous torque that damps
the rotation of an object in a fluid.  When the rotating object is round, the
fluid flow is laminar; hence, the viscous torque is proportional to the
angular velocity to the first power, analogous to Stokes’ model.  However,
when the rotating object is rough, causing the fluid flow to be turbulent,
the viscous torque is proportional to the angular velocity to the second
power, analogous to Newton’s model.  In addition, this experiment
demonstrates that the proportionality constant between viscous torque and
angular velocity is dependent on the shape of the object, as is the case in
both Stokes’ and Newton’s models.

INTRODUCTION

As an object moves through a fluid, the
viscosity of the fluid acts on the moving object
with a force that resists the motion of the object.
Two common approaches for modeling this
resistive force are the Stokes’ and Newton’s
models.  In 1845, Sir George Gabriel Stokes
published equations of viscous flow.1  In
particular, Stokes determined the resistive force,
or viscous drag force, of a sphere falling under the
force of gravity in a fluid, either liquid or gas, to
be directly proportional to the sphere’s velocity.
Stokes model most accurately describes objects
moving linearly in a fluid that moves with
laminar or steady flow.2

Sir Isaac Newton, however, showed that
the drag force is proportional to the square of the
velocity of the object and acts in the directions
opposite to the direction of the velocity.
Newton’s model is associated with higher
velocities and turbulent, or non-steady, flow. 3

This experiment investigates the relationship
between frictional torque and angular velocity, by
drawing an analogy between the linear quantities
discussed above and measurable angular
quantities.

THEORY

Most commonly, viscous drag is modeled
by either Stokes’ or Newton’s models.  Both
models agree that the drag force acts in the
direction opposite to the velocity vector for the
object in motion.  The viscous drag force
according to Stokes’ model for an object in
laminar flow is given by:

  
r 
F D = −c1

r 
v (1),

where c1 is a proportionality constant that depends
upon the viscosity of the fluid and the shape of the
object and v is the instantaneous velocity of the
object.2

The viscous drag force according to
Newton’s model for an object in turbulent flow is
given by:

  
r 
F D = −c2v2ˆ v (2),

where c2 is a proportionality constant that again
depends upon the viscosity of the fluid and the
shape of the object.

Based on these models, this experiment
allows for the resistive drag force to be
proportional to some other power of v.  Such a
drag force would be given by:

  
r 
F D = −c3v

n ˆ v (3),
where c3 is another proportionality constant
depending on the fluid’s viscosity and the object’s
shape, and n is the power of the velocity.
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By drawing an analogy between linear and
rotational dynamics, the rotational counterpart to
such a drag force can be anticipated.  In particular,
by substituting the corresponding rotational
quantities into equation (3), the frictional torque
acting on an object rotating with angular velocity
ω might be modeled by:

τD = Iα = I
dω
dt

= −c4ω
n (4).

Then solving equation (4) for dω/dt, yields:
dω
dt

= −
c4

I
ω n = −kω n (5),

where k = c4/I is a “new” proportionality constant.
Differential equation (5) can easily be solved for
various values of the exponent n.  For instance, if
n = 1, equation (5) can be solved using the
separation of variables technique to yield:

ω = ωoe
− kt (6),

where ωo is the initial angular velocity.  And, if
n = 2, the solution to equation (5) is given by:

1

ω
= kt +

1

ωo

(7).

EXPERIMENT

This experiment uses an Ealing air
gyroscope (#13-2209).  The steel rotor ball of the
gyroscope is the rotating mass that is studied.  The
angular velocity, or frequency of rotation, of the
rotor ball is determined using a laser.  Black strips
of electrical tape are placed on the upper portion
of the shiny rotor, and a laser is aligned so that it
reflects off this portion of the rotor.  Then the
laser beam is focused through a lens onto the tiny
pinpoint head of a fast photodiode.  Figure (1)
below illustrates the circuitry setup for the
photodiode.

Figure (1).  Circuitry involved with the photodiode.

When the laser light reflects onto the
photodiode (or phototransistor), the current
supplied by the power supply easily passes
through the phototransistor, causing a high

voltage reading to pass through the Schmidt
trigger.  But, when no light is incident on the
phototransistor, little current makes it to the
resistor, sending a lower voltage reading to the
Schmidt trigger.  The Schmidt trigger then shapes
the voltage signals into a sharp square wave,
which can then be read by a Hewlet Packard
frequency counter (5385A).  In addition, the
frequency counter is connected to a Macintosh
computer with a GPIB cable, in order for a
LabView algorithm to import the data acquired
through the frequency counter.

Finally, a tank of compressed nitrogen gas
is connected by a tube to the air gyroscope
apparatus.  The pressure of the N2 gas coming out
of the tank is adjusted to a constant 12 psi
throughout the experiment, so that the rotor “sits”
on a cushion of gas.

A LabView (v.3.1) program “Viscous
Torque.LV3,” was written to set the controls for
and to import data from the frequency counter.
The rotor is spun by hand to attain the highest
possible initial angular velocity.  Then, as the
rotor spins, the LabView program calculates the
average ω value over 10.0 second intervals and
records a table of values for ω and the
corresponding time to a file designated by the
user.

In order to more thoroughly investigate the
relationship between frictional torque and angular
velocity, the rotor is altered by adding surface
area to the rod, which causes the rotation to be
damped more quickly.  Rectangular pieces of
styrofoam board, each measuring 0.5 cm thick by
3.0 cm wide by 6.0 cm long, are used for the
additional area.  In order to help keep the rod
upright as it rotates, two rectangular pieces are
added opposite one another (like wings spanning
approximately 12 cm) to the rod of the rotor for
each run.  Each pair of styrofoam pieces is
referred to as A, so that the run with no additional
area is run 0A, with two additional pieces is run
1A, with four additional pieces is run 2A, and
with six additional pieces is run 3A.

ANALYSIS AND INTERPRETATION

In order to determine if any of the data can
be modeled by equation (6), a semi-log plot of ω
versus time for all data is performed.
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Figure (2).  Semi-log plot of ω versus time for all data
sets, where a linear result implies that the exponent n = 1 in
equation (4).

Since only the 0A data in figure (2) appears to
have a straight, linear result on the semi-log plot,
only the 0A data, or data taken without additional
area, is accurately modeled by equation (4) with
n = 1.

In order to determine the value of n for the
other sets of data, equation (5) is considered.
Thus, dω/dt versus ω is plotted, using Igor Pro
(v.3.0).  A powerlaw fit is performed to determine
the values of k and n for each data set.  In
particular, we are interested in fitting a function of
the form:

     y = c1 x( )c2 (9),
The constant c1 represents k, and c2 represents n
from equation (5).  Thus, on a log-log plot, the
slope of a linear fit gives the exponent n and the
intercept relates to the proportionality constant k,
such that log(k) is the intercept.

Table (1) below lists the outcomes of the
powerlaw fit, and figure (3) shows the log-log plot
of dω/dt versus ω for all four sets of data.  All of
the data is fit over the more accurate region of
higher ω values, since at smaller ω values all
sources of error have a greater impact.
Specifically, the data is fit from the maximum ω,
or initial ωo, to approximately ω = 2 rps.

Table (1).  k and n values (from equation (5)) for all four
data sets, including standard deviation based on the
powerlaw fit.

data slope = n intercept = k
0A 1.03±0.04 (9.3±0.5)x10-4

1A 1.92±0.02 (7.0±0.2)x10-4

2A 2.04±0.05 (13.0±0.9)x10-4

3A 2.04±0.08 (17.2±1.4)x10-4

8
9

0.01

2

3

4

5

6

7

8
9

0.1

2

3

  d
ω /

dt
  (r

ot
at

io
ns

/s
ec

on
d2 )

7 8 9
1

2 3 4 5

 ω  (angular velocity (rps))

 area = 3A
 area = 2A
 area = 1A
 area = 0A
 powerlaw fit for

         data with wings
 powerlaw fit for 

         data with no area

 slope ≈ 2
 slope ≈ 1

Figure (3).  Log-log plot of dω/dt versus ω for all data,
where the slope gives the exponent n and the intercept gives
the proportionality constant k from equation (5).

As shown in figure (3), the data for 0A has
a different slope, or n value, than does the data for
1A, 2A, and 3A.  Indeed, in table (1), we see that
n is approximately 1 for the data with no
additional area, as expected. Also, as shown in
table (1), n is approximately 2 for all of the data
taken for the rotor with “wings,” or additional
area.  Thus, the viscous torque is directly
proportional to angular velocity for the rotor and
smooth rod, i.e. τD ∝ ω1 for the 0A data, and the
viscous torque is proportional to the angular
velocity squared for the rotor with wings, i.e.
τD ∝ ω2 for the 1A, 2A, and 3A data.

Since the 1A, 2A, and 3A data are all
modeled by the same equation, analysis of this
data leads to an understanding of any dependence
in the proportionality constant k on the known
physical system.  Thus, considering equation (7),
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the proportional relationship between the torque
and the angular velocity squared can be
demonstrated.  Consequently, a direct plot of the
inverse angular velocity versus time will have a
linear result for the data with wings, given τD ∝ ω2

for the 1A, 2A, and 3A data.  Figure (4) below
illustrates this relationship.  As in figure (3), a
linear fit is shown only for the region from initial
ωo to ω ≈ 2 rps, where the data is more accurate.
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Figure (4).  Plot of 1/ω (angular velocity-1) versus time
for data with additional area, demonstrating the proportional
relationship between τD and ω2 for this data.

The slopes of the linear fits in figure (4) give the
proportionality constants k from equation (7).
Thus, we note that these slopes as well as the k
values listed in table (1) are consistent.  In
addition, the proportionality constant k appears to
increase as the  amount of area added to the rod is
increased, indicating that the proportionality
constant is directly related to the shape of the
rotating object.

CONCLUSION

Data analysis has shown that the shape of
a rotating object has an interesting impact on the
viscous torque.  For the smooth rod and rotor, the
viscous torque is best modeled by an equation
analogous to Stokes’ model of viscous force for
objects moving in laminar flow.  This result

should be expected, since the air flow around the
rod as the rotor rotates will be steady and circular.
On the other hand, when “wings” are attached to
the rod, the viscous torque is best modeled by an
equation analogous to Newton’s model of viscous
force for objects moving in turbulent flow.
Turbulent flow is generally associated with
vortices forming behind the object as it moves.
And, indeed, it is plausible that vortices are
created behind the wings attached to the rod, as
the rotor spins.

In addition, figure (4) reveals the fact that
the proportionality constant between the viscous
torque and the square of the angular velocity
depends upon the amount of surface area added to
the rod.  This is also expected, since in both
Stokes’ and Newton’s models the proportionality
constant depends upon the shape of the object and
the viscosity of the fluid.  In this experiment, the
viscosity of the fluid(s), a combination of N2 gas
and air, remains constant, except for variations
due to temperature and pressure; thus, variations
in the proportionality constant are expected to be
related only to the shape, or geometry, of the
object.  And, as additional wings are added to the
rod, the shape of the rotating object is effectively
changed.
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