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During a  tumbling sequence a performer will rotate about a number of
different axes. During the total rotation, the angular momentum will
remain constant unless an outside torque is applied to the system.
Astronauts tumbling in a zero gravity environment perform a variety of
twists and somersaults. Throughout their motion, the angular momentum
is constant while rotating freely. During one sequence the angular
momentum was determined to be a constant 61±13 kg*m2/sec. During a
different sequence, the momentum was constant at 35.7±1.2 kg*m2/sec.

INTRODUCTION

Biomechanics involves studying and
analyzing humans in motion and the various
forces acting on the body during motion. There
are four biomechanical analysis techniques
commonly used to analyze sporting motions6. The
first is simply watching with the eyes and is
common since no outside objects are necessary.
Second, there is basic cinematographic analysis
involving film or videotapes. It is useful in
observing what actually happened as opposed to
what supposedly happened. Next, some basic
math and physics principles are applied to the film
footage to see how to improve skills by changing
body position or to verify certain physical
principles. The fourth analysis method is
biomechanic research, where sophisticated
instrumentation such as high speed cameras,
strobe lighting, and force detectors record the
physical motions. This technique is not common
for everyday analysis but better utilized by
researchers wanting to improve the quality of
sporting performance.

Intermediate cinematographic analysis is
helpful in determining whether human motion
follows basic physical principles. Divers,
trampolinists, and gymnasts perform a variety of
different body rotations through different axes of
the body. A somersault is a body rotation through
the transverse axis. A twist is a body rotation
about the longitudinal axis. Somersaults are
mainly performed with the body in a tight, tuck
position while twists are performed with the body
in full extension. The reasoning behind the
respective positions is to minimize the moment of
inertia and maximizing angular velocity
throughout performance with conservation of
angular momentum.

PikeLayout Tuck
Figure 1: Common body positions held during tumbling.

A combination of somersaults can be combined
with twisting to result in multiple twisting
somersaults. It may seem that when performers
execute twisting somersaults, then the
conservation of angular momentum is violated.
This is not true since the relative moments of
inertia of the body adjust themselves by a
repositioning of the limbs.

The NASA Skylab space station astronauts
from May 1973 to February 1974 experiment with
tumbling moves similar to those performed by
gymnasts. The astronauts are moving in a zero
gravitational field and therefore the moves have
unlimited time to be executed. The principle of
conservation of angular momentum is
demonstrated as the astronaut tumbles, twists and
rotates in space. Cinematographic analysis will be
used on the Skylab footage to verify the
conservation of angular momentum throughout
tumbling.



THEORY

Angular momentum is always conserved
unless acted on by an outside torque. If  the
moment of inertia of the body changes in
magnitude, the angular velocities will change
correspondingly. In tumbling moves, mass
distribution is constantly changing as body shape
is changing about the axes. It is difficult to find a
precise moment of inertia for a human body since
it is not a rigid system. To find the exact moment
of inertia about a given axis it would be necessary
to take each particle separately and multiply its
mass by the square of the distance to the axis1.
This is obviously not possible for each stage of
the rotation so more general approximations must
be made for the moments. To make such
approximations, it is necessary to use the parallel
axis theorem with the distance from each object’s
center to the system’s center of mass.

EXPERIMENT

The segment pertaining to the astronauts
tumbling on the Skylab Physics videodisk needs
to be recorded as a movie on a jaz hard drive.
Apple Video Player records the movie from the
laserdisk using no compression for the best
results. The movie can be opened in 2D Video-QT
and the height of the astronaut is calibrated and
set relative to a fixed origin from which all the
data points can be based. The vertical height of
the astronaut is 1.8 meters3. The origin is
arbitrarily set at the midsection of the body.
Sequential frames are analyzed for the position of
the body and it is essential to record the frame
from the actual Skylab footage which has 30
frames per second.

Two different films clips were selected to
see the somersault from different perspectives.
Each clip requires a different method for the
estimation of the moment of inertia and the
angular velocity. In one part Astronaut Bean
mainly somersaults in the XY’ plane while in the
other Astronaut Gibson somersaults into and out
of the monitor's screen.

At each successive frame mark points at
the head, waist, knee and foot. The same place on
the body on each frame was marked for accuracy
and each frame number was recorded. The data
collected by clicking on the body parts will give
the coordinates of the body parts at each frame.
From this, the moment of inertia and angular
velocity are found.

For the moment of inertia estimation, the
body is broken into three rigid boxes. The

measurements for the boxes and the body masses
for each segment are approximated by Frolich3.

mass height width depth I
Head 47.3 80 30 18 2.65
Upper 17.3 50 30 18 0.41
Lower 11 50 30 18 0.26
Table 1: Table of mass and body dimensions(kg, cm) for a 6
foot tall male. I is in units of kg*m2.

The moment of inertia in Table 1 is only the
moment of inertia for the individual boxes about
an axis through the center of each box. The
moment needs to be found for the entire system
about the center of mass. The center of mass for
the entire system of three boxes must be found at
each frame as it constantly changes with body
repositioning. The parallel axis theorem is used to
find the moment of each block about the center of
mass. The total moment of inertia of the system is
the sum of the three blocks about the center of
mass.

Going frame by frame, the lines adjoining
the body parts are also rotating and from this the
angular velocity can be approximated. Finding the
tangent of the angle the body rotates through and
using the small angle approximation, dθ is found
for each time. The time between successive
frames is known and therefore angular velocity is
easily calculated. Once both the moment of inertia
and the angular velocity are found, the total
angular momentum for each frame is calculated.

In the second somersault clip, the
astronaut is tumbling into the screen. His body
starts in a layout position and gradually changes
from a pike to a tuck (Figure 1.) There are two
tuck positions: a tight tuck and a loose tuck each
with a different rotating radius.

To find the moment of inertia of the body,
various shapes are compared to the different body
positions (Figure 2.) A sphere is used for both
tucks, a block is used for the layout and two
blocks in a system are used for the pike. The pike
is the only difficult moment to find and the
parallel axis theorem is again necessary about the
center of mass.



Figure 2: Various shapes associated with the body positions
throughout the tumble. The total mass is assumed to be
75.6kg with the upper block as 47.3kg and the lower block
as 28.3kg.

ANALYSIS AND INTERPRETATION

The astronaut performed a number of
twists and somersaults in the XY’ plane. The total
momentum is calculated for each frame and
should remain a constant value unless an outside
torque is applied. At one point in the tumbling, the
astronaut pushes off the wall giving himself
additional momentum. Since the push or torque is
applied to the system the conservation of
momentum will no longer hold true. Up until the
touch on the wall, the momentum should be
constant.
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Figure 3: A plot of angular momentum versus time for a
somersault in the XY’ plane. The astronaut touches the wall
at 4.1 seconds causing an increase in momentum. Plot
smoothed once in Igor Pro.

As Figure 3 shows, from zero to 0.5
seconds, there is a spike in the curve. This is due
to a different perspective angle of the camera.
From 0.5 to 4 seconds, the perspective remains
constant and the total momentum is roughly a
constant value. Throughout this region, the
astronaut is only changing his moment of inertia.
The velocity will compensate for any moment
changes and will keep momentum constant. The
average value for the momentum is 61±13
kg*m2/sec. The standard deviation is about a 21
percent error. The error is not unexpected due to
the rough approximations made about the human
body and fair resolution in the video analysis.

 After the touch at 4.1 seconds, the
momentum value increases. From 4 seconds to 7
seconds there is no longer a constant value for
momentum. The graph looks more like a sinusoid.

This is because after the push off the wall, the
camera angle also changes. The astronaut is no
longer in the perpendicular plane of the camera.
The maxima of the sinusoid region is probably a
constant momentum value of about 400
kg*m2/sec. Each minima of the sinusoid wave is a
complete revolution. The lower value is due to the
perspective since not all of the momentum is
observable.

The time frame from about 0.5 seconds to
4 seconds is where the angular momentum
remains constant. This region is analyzed to see
what the three individual blocks are doing as a
function of time.
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Figure 5: Plot of each block’s momentum as a function of
time for the segment where angular momentum is
conserved. The constant momentum value is 61±13
kg*m2/sec.

The momentum of the head block is much
greater than other two blocks due to a greater
concentration of mass in the upper body. The
addition of the three block curves should total the
constant value line at 61 kg*m2/sec. As the curve
of the head block drops, the upper or lower curves
must counter by raising their curves to maintain
the constant value. For example at around 2.8
seconds the head curve dips while the upper curve
raises to maintain the constant value. At some
points the head curve goes above the constant
value line but such deviations are expected due to
experimental error.

For the next somersault series, the moment
of inertia estimations and angular velocities
require simpler calculations. Using the estimated
shapes in Figure 2, the body's moment of inertia is
approximated. The various radii and lengths given
in the figure are found by using the ruler in 2D
Video-QT after the calibrations have been made.



Knowing the time between frames where
one revolution occurs, the angular velocity is
calculated. These values are used with the
moment approximations to find the angular
momentum. The series begins with a slower
rotational speed due to the layout position. As the
series progresses, the body pulls its mass closer to
the turning axis and the speed accordingly
increases. As the moment decreases, the velocity
increases and vice versa. The ratio of the moment
of inertia for the layout, pike and tuck is about
4:2:1. A plot of the total momentum versus time
should result in a constant horizontal line since no
outside torques are present in the system.
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Figure 6: The plot of angular momentum versus time for a
somersault.

The plot of angular momentum versus
time is nearly straight and consistent with a
horizontal line. The average value is 35.7±1.2
kg*m2/sec. The standard deviation is only 3.4
percent error. This series' results are much more
accurate than the somersault performed in the
XY’ plane. Possibly the moment of inertia
estimates were more accurate since one shape
instead a series of three shapes were used. The
rotation about the somersaulting axis did not stray
as much either. In the first clip, his motion does
not remain entirely in the XY’ plane and twists in
and out of the screen are frequently visible and
hard to measure.

CONCLUSION

When a group of leading physicists and
coaches were questioned whether or not angular
momentum  is conserved during certain types of
tumbling passes, a surprising  34 percent
answered incorrectly3. Throughout any tumbling

series of twists and somersaults, angular
momentum is always conserved unless an outside
torque is applied to the system.

The astronauts on the Skylab space station
were filmed performing a number of gymnastic
moves. Two different sequences were analyzed.
The first series analyzes the astronaut in the XY’
plane. His momentum remains constant at 61±13
kg*m2/sec until he pushes off the wall. By doing
this, he gives himself additional momentum. The
sinusoidal motion arises after the camera angle
changes. The new angle does not allow for all of
the momentum to be observed at once. A constant
momentum value is around 400 kg*m2/sec.

The second series yielded more accurate
results. The somersault is performed into and out
of the screen. The moment of inertia estimates
may have been more accurate. As the moment of
inertia decreases, the angular velocity increases.
The ratio of moments for the body positions is
about 4:2:1, the same result Smith7 finds. The
momentum throughout this series is constant at
35.7±1.2 kg*m2/sec. In conclusion, throughout a
somersaulting series the angular momentum will
be conserved unless an outside torque is applied
to the system.
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