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Piczoclectricity, the interaction between mechanical and electrical systems,
was studied in a ceramic containing compounds of lead, titanium, and
zirconium. An AC voltage was applied to a piezoelectric ceramic, and the
effect was observed. It was found that the mechanical response to an
applied electric field in the ceramic is frequency ds?enden(. arying the
frequency, a strong resonance was found at ~19.67 kHz, with a smaller
resonance at ~18.6 kHz. There were other resonant frequencies observed
both above and below the one studied in this experiment, and a fundamental
frequency was not observed, The resonant frequency was modeled with a
Lorentzian equation, the equation for a forced, damped, harmonic oscillator.

Introduction

The following experiment observes the
effects on a piezoelectric LTZ ceramic when an AC
voltage is applied. The frequency was varied, the
mechanical stress on the material observed, and
voltage readings of the phase shifts at 0" and 90°
were recorded. The effect on the LTZ ceramic was
resonant frequencies being produced by the
mechanical stress, which in turn was produced
from the AC voltage.

At certain frequencies, standing waves,
some in the acoustic frequency range, are set up
within the piezoelectric ceramic. In the frequency
range studied in this experiment, two resonances
were studied and modeled. The two models used
1o describe the phenomenon were 1) a Lorentzian
curve focusing on the main resonance observed
and 2) a curve fit containing two Lorentzian
equations, taking into account both resonances
observed. The two curve fits are equations derived
from a driven damped harmonic oscillator, The
experiment also determines if there is a model to
explain where the different resonant frequencies
will occur based on resonant frequencies
qualitatively observed in this experiment and one
quantitatively studicd by Chris Ditchman,

Theory
Piezoelectricity is electric polarization of a material
when a mechanical stress is applied. The converse
of this phenomenon is also true; in certain materials
mechanical stress is when an clectric field
is applied. This unique relationship between the
electric field and the mechanical stress is directly
proportional,

In order for a material to have piezoelectric
properties, certain qualities must be present. The

most important of these deals with the symmetry of
the matcrial. For a piczoclectric material, in this
case LTZ, the crystal lattice structure cannot be
centrally symmetric. If a centrally symmetric
crystal were put under stress and became polarized,
there would be only a reverse in polarization, Even
if the entire crystal were inverted, there would be
zero change in the stress of the material because it
is centrally symmetric, and merely a reversal in
polarization. !

The reason there can be a physical change
in the structure of a piezoelectric material is due to
ions present on the crystal structure which shift
under an applied electric field, causing the physical
dimensions to increase in the direction of the
electric field. Conversely, when mechanical stress
is applied, there is displacement of ions within the
crystal lattice, causing an electric polarization.2

The converse piczoclectric cffect
(mechanical stress produced by an applied electric
field) acts very much like a driven, damped
harmonic oscillator. As the AC voltage is being
applied to the ceramic material, it causes
oscillations parallel to the axis across which the
clectric field is being applied. These oscillations
can be modeled by looking at the equation of a
weak driven, damped harmonic oscillator.

The equation of motion for a driven,
damped harmonic oscillator is

x+2Bx+ &fx = A cos(a) (),

where x is the position, B is a damping term, 6?
is the ratio of the spring constant over the mass

(L). and A cos(t) is the driving force.
m

This solution, in a force driven, damped harmonic
oscillator eventually dies out in time and leaves:3



xp(t)= Dcos{at = §) (2).
Solving for the coefficient D yields:
A
D=
\{(m% - a)z)?' + 4m2132
For a weak harmonic oscillator at resonance
cquation (3) becomes:

3)
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Equation (4) is the Lorentzian equation for a driven
harmonic oscillator with weak damping.

The model which will be used to fit the data
obtained from this experiment is equation (5) when

2 _ D}
D =—"21n. resulting in B =@ -y (these

values are in radians/sec. In this experiment they
will be divided by 2= to give the frequency values,

f, and the value of f in kHz). (For the complete
development of the equation for the amplitude of a
weak force driven damped harmonic oscillator sce
reference 3).

The following graph gives a visual

presentation of what D, ,,2 represents along with

®', wp, and B. Approximate values of these
parameters can be obtained directly from the plot.
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Fig. 1. The model o be used to fit data obtained in this
experiment. The x-axis represents frequency and the y-axis
repeesents the square of amplitude for the Lorentzian
equation of a driven damped harmonic oscillator,

Setup/Procedure
A Wavetek sine wave gencerator applics an AC
signal to the reference input of a SRS 510 lock-in
amplifier, to the input of a Kepco BOP power
supply / amplificr, and to a HP frequency counter.
The output signal from the power supply/amplifier
goes to the LTZ piczoelectric force driver (the
“stack™). The force from the LTZ force driver is
measured by a PCB force transducer in the stack.
Finally, this signal is sent to the input of the lock-in
amplifier. The signal coming into the lock-in
ifier is another picce of information needed for
data analysis besides the frequency of the wave
generator.

The force driver, or the “stack™ was
clamped to reduce any outside vibration effects
from equipment and to make sure that the only
cffc':lcltl on the LTZ material was from the incoming
signal,

Data / Analysis
Data was collected from the frequency counter
(measured in kHz), recording the in-phase (0°) and
out-of-phase (90°) signals from the lock-in
amplifier (measured in mV)., The data was
analyzed and fit to two different curves, both
containing Lorentzian equations of a weakly
damped, driven harmonic oscillator.,

The data was analyzed using the voltage
amplitude squared,

1A=V +VZ, ()

and the phasc anglc between the voltage amplitude
and the “in phase” (0°) voltage reading:

5= un"(%) .

The uncertainty assigned to each frequency
readings is £0.0015 kHz.

Resonant frequencies were first
qualitatively observed, and once a significant
resonance had been found, data was taken at
intervals of about 25 to 50 Hz. The data was taken
between ~18.4 kHz and ~22.1 kHz, as displayed
in Fig. 2. At or near resonance the in-phase and
out-of-phase voltage readings were the largest,
which is consistent with Eqn. (6).

Fig. 2 displays the voltage amplitude
squared vs. frequency and has the fo}lowing fit

applied to it for the two-resonance
C1 Cq
y=c¢co+ + 9),
w9 (x—c2)2+C3 (x-c5)2+c6
taking into account both the large resonance fre-

quency and the smaller one seen on the left part of
the graph.
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Fig. 2. Voltage amplitude squared vs. frequency with a curve fit that takes into account both of the resonance frequencies (oae
wilh @ peak at about 19,7 kHz and the other at about 18.6 kHz). The data are fitted well by a two resonance model.

Coef, Yalue Standard Dev, Theory
0 -0.0234 0.0074 e

¢t 00187 . 00057  (DymaB)?
©2 18.6 (fixed) --- (wg)y

c3  0.128 0.040 fis

cs  0.0985 00036  (DypnaB2)?
cs  19.6667  0.0032 (@p)2
cs  0.0829 0.0033 B3

Table I: These values correspond to €0, ¢l, €2, €3, ¢4, 5,
and cg in the curve fit, along with the standard deviation
from the dawa, It should be noted that ¢ was sel o be
constant, forcing the smaller of the two resonance
frequencies 1o be 18.6 kHz,

The peak of the smaller frequency was
farced to be at 18.6 kHz (¢2) so the fit would take
into account this smaller frequency resonance.
From the curve fit, specifically for the larger

resonance, B, @y, and Dy« can be determined.

is (0.288 £0.057) kHz, fp is (19.6667 +£0.0032)
kHz, and Dpax is (1.090 £0.083) mV. These
values are to be compared with the fit that is to
follow.

The second fit used on the same set of data
but with a Lorentzian curve for one-resonance and
confining the fitto (hc near-resonance region is:

10).
ydox_d;;!+_d; (10)

Coef Malye Deviation Theory
do 213 .041 -

di 0415 0083 (D2 maxP2)
dy  19.666 0065 (@9)2
d3 00420 .0078 B3

Table I1: These values correspond 1o d, di, d2, and d3 in the
curve fit, along with the standard deviation from the data.
The standard deviation valucs indicate that the fit is very

close 1o the data, supporting the theory of the piczoclectric
material responding as a driven, damped harmonic oscillator,

Again, the data are well described by a
ven, damped harmonic oscillator. As in the first

fit, B, wg, and Dyax can be determined for the
larger resonance frequency. P is (0.205 £0.088)
kHz, fpis (19.666 10.0065) kHz, and Dy zx 15

(099 £0.13) mV.
Comparing the two fits, there is some

consistency between [, wg, and Dpax which is
what one would expect. The values for wg are
very consistent, the only difference in the valucs

being the number of significant digits which can be
taken (fp=(19.6667 £0.0032) kHz in the first fit as

compared 1o fp=(19.666 +0.0065) kHz for the
second fit).

Although, the values of B have a difference
between them (P is (0.288 £0.057) kHz in the
first fit and P=(0.205 +0.088) kHz for the second
fit), although they arc within one standard

deviation of each other. The [ value for the first fit
is larger because in that fit two Lorentzian curves



arc taken into account. In any further data
analysis, particularly comparing & (angle) values
to expected values from the theory, the value of
for the second curve fit (with a single Lorentzian
equation) will be used.

The values for Dyax are (1.090 £0.083)
mV for the first fit and (0.99 £0.13) mV for the
second fit. These are also within one standard
deviation of each other, showing consistency
between both of the curve fits.

Figure 3 is phase angle vs. frequency for
the cxperimental data and theorcetical values. The
points of inflection indicate where the resonance
frequencies lie. In Fig. 3, the larger of the two
resonance uencies has a point of inflection m
about 19.7 consistent with Fig. 2 displa
the voltage amplitude squared. The nor
resonance 1s difficult to pinpoint on this graph, but
it falls somewhere between 18.7 kHz and 19.1
kHz.
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Fig. 3. Angle vs. frequency of experimental and theoretical
data. The inflection points indicate where resonant
frequencies occur, The major resonance has a frequency of
about 19.7 kHz, the minor resonance has a frequency
somewhere between 18.7 and 19.1 kHz. A scaling constant
of 1.4 was uscd in the theorctical values to account for
syslematic error. The overlay further suggesis the
piczoclectric effect can be accurately modeled as a driven,

damped harmonic operaor,

The theoretical values in Fig. 3 for the
angle vs. frequency are calculaied between the
values of 19.1 kHz and 22.2 kHz, This is the arca
including the main resonance frequency observed.
The theoretical values were calculated from the
equation:

20p

11),
W) (11)

In Fig. 3 the experimental data is consistent
with the thco:euca] fit. A scaling constant of 1.4

Angle (tan (90_phase/0_phase))
=

'll! | RAAEE REAAS RABAE BE

.
w

§=tan"Y(

was used to bring the theoretical values closer to
the range of the data collected. The consistency of
the theory with collected data continues to show
that the model of a force driven, damped harmonic
oscillator is accurate in describing the observed
effects due 1o the piezoelectric matenal,

Conclusion

When studying piezoelectric phenomena, two
resonance frequencies have been observed in the
region studied. The major resonance occurring at
~19.667 kHz and a minor one occurring anywhere
between 18.6 kHz 1o 18.8 kHz. The minor
resonance observed is difficult to determine,
simply because the major resonance frequency is
strong in comparison.

The piezoelectric material observed in this
experiment can be accurately modeled by a driven,
damped harmonic oscillator. The assumption of
weak damping, 8 << @y, is an accurate one, with

®p being about 20 times the value of B. The
Lorentzian fit(s) accurately modeled the collected
data, as did the plot using Eqn. (11) to describe the
observed difference in phase angle.

In trying to construct a model to describe
the different resonance frequencies observed
qualuauvely in this experiment, and quantitatively

nters, it there is certainly
no( a smg e fundamental equency that can be
casily cxphmed. Some of the observed resonance
frequencies may even suggest that the standing
resonance waves may not be with nodes at each
end of the LTZ ceramic, but even poslblg have a
one fixed end and an antinode at the other end.
Chris Ditchman observed a strong resonance
frequency at about 6.6 kHz, and a correlation
between that resonance and the one observed in
this experiment may be possible. The resonance he
observed is about three times as small as the
resonance fnequency studied in this experiment.

tation is needed to have a
clearer undmm%?n the phenomena present in

LTZ ceramic material under applied AC electric
ficlds.
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