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Abstract: This

iment observed resonance phenomenon for a mass on a

experimen
rginz exhibiting forced damped harmonic oscillations. The experiment

showed excellent

nt with theoretical predictions. The resonance

frequency for this forced damped harmonic oscillator, with water as the
damping medium, was measured to be ® =11.181+0.01 rads/s.

INTRODUCTION

The simplest case of periodic motion is simple
harmonic motion and it is defined as the motion of
a particle whose acceleration is always directed
towards a fixed point (an equilibrium position),
and this acceleration is directl ymorﬁoulto
distance from that equilibrium positi

This type of system is unrealistic because
it assumes no dissipative forces once the particle
is in motion. Physical systems, however,
experience various dissipative forces. My
experiment uses a damped harmonic oscillator
driven by a periodic driving force. The periodic
driving f%n:c was by a motor to which a
string was attached which in turn was attached to
the spring that holds the vibrating mass. The
appartus that was used was a Pasco Scientific
Driven Harmonic Motion Analyzer (Model 9210).
In such an externally driven oscillator, the
amplitude of oscillations varies in response to the
drive frequency. At some value of the drive
frequency, the amplitude of oscillation becomes a
maximum; the corresponding frequency is called
dﬂg’ v;;sonance frcqu:lc’yd‘ Thx:mo;lclnﬁ:q when tl;ef

u ualsthe n uenc

the osgilﬁl:gngenscyysl;qn. This experiment obscr’\'red
this phenomenon of resonance using the Pasco
Scicntific unit and water as the damping medium.

THEORY
The equation of the motion that was used
to analyze the data looks like:

X428 +@lx=F(@1) (1)

where wg is the natural frequency of the spring-
mass system in the absence of the driving force,
F(t) is the driving force provided by the motor,
and B is the damping parameter. When  the
system is driven at a frequency other than the

natural frequency of the system, the syste
oscillates at the driving rather than d
natural frequency after the initial or the transie
effects due to the natural frequency die out. .
equation 1 if the driving force is sinusoidal, 1l
solution of the equation consists of

homogeneous solution which accounts for tl
initial or transitory oscillations of the system, ar
a particular solution which describes the motion
be analyzed. The particular solution looks like:
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where @ is the frequency of the drive and & is tt
phasc shift. Further analysis of the differenti
cquation 1 and its solution gives the followir
relations. !
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where @, is a constant, % = 37 if the drivin

force is sinusoidal and has the form % Sin(eX),
There are three cases of general interest as
far as the damped harmonic oscillator

; underdamping,
critical damping, and overdamping. M
experiment requires the analysis of a
underdamped oscillator for which B, the dampir
parameter, is very small compared with @g. T!
system under analysis was a lightly dampe
system harmonic oscillator. By this assumptio
we can deduce the resultl
W, =, (5)



where @R is the resonance frequency of the
oscillating system. Furthermore, we can also make
the approximations about values of parameters!
like D since at resomance @,=@®@ and
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Also at the half power point, D* = %D’... which
gives
Aw=1p (7

Therefore, the experiment was conducted in

a way so that I could determine Dpgx and Og
experimentally and then compare the
experimental results with the theoretical values for
these parameters. This enabled me to see whether
the functional form predicted by theory is
consistent with the experimental data.

EXPERIMENT

The Pasco Scientific harmonic motion
analyzer allows measurement of frequency of the
drive and amplitude of the oscillating mass. One
can select either the frequency display or the
amplitude display on the Pasco unit
The amplitude of the driving force can be fixed by
moving a scale attached to the motor. The driver
amplitude was set at 1.540.25 mm. The Pasco
motion analyzer allows the umwvaryﬁeque:coz
by moving a fraﬂ.:lcncy control knob. This ki
was used to set the dnving frequency at a value
and the system was allowed to oscillate for a
while before recording the amplitude of the mass.
The dﬁmimw is measured by an optical
sensor (a p set LED) mounted on an arm of
the Pasco unit that holds the spring. The driver
frequency is difficult to read off the Pasco unit
counter because it fluctuates. The best way to
determine frequency values is to average the
display, with the uncertainty representing the
range over which frequency values fluctuate.
Measurements at different driving frequencies
were made.

The raw data is shown as a plot of amplitude

vs frequency in fig.1.

ANALYSIS & INTERPRETATION

T used the Lorentzian fit in Igor 1.2 to anal!
my experimental data. The form of the Lorentzi

fit in Igor looks like
K,
=
4 (x-K,) +K, ®

Our function was modified accordingly as
D e

“w-aysp @
Thus, K, = f’D*eu, K, =0,, and K,=p% Ig
gives the fitted values for K, K2, K3 as:

K, =36020;
K, =11.181+0.005;
K, =0.0368+0.0024

To analyze experimental results accordin
1o equations 8 & 9, the values for amplitu
squared and ®, where @=2xf, and f is the driv
frequency were calculated. D2 corres to th
amplitud’:: squared term. I plotted amplituc
squared vs ®, the driver frequency. Fig.2 shov
my theoretical (Lorentzian) function as well as n
experimental values,

From Fig.2 one can read off wg. We see
that this value falls between 11.1 rad/s and 11
rads/s which is in excellent agreement with tl
parameter value used in the Lorentzian fit. We ¢
also see that Dipgy has a value between 9700 mn
9800 mm?2, Once again this agrees with
experimental results. The recorded value fi

max was 98.9 6.0 mm.

Thus values of Ko, K1, K2, K3 give
the following parameter values:

D_, =98.9%6.0mm

P=0.192+0.046rads [ s
w,=11.181+0.005rads / s

CONCLUSION
The tally obtained data
gave a beautiful resonance shape. Th
experimental data was fitted Izﬂt\he theoretic
function (Fig.2) for the forced ped harmon
oscillator amazingly well. Because of th
excellent match between experimental and tl
theoretical function, good agreement between tl
theoretical and recorded experimental valw
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Fig.2. Amplitude squared (mm?2) vs w (rads/s). (w=2xf). This plot shows the experimental

data and the Lorentzian fit. Markers correspond to the experimental data and the line

corresponds to the fit. Error bars are not visible because they are smaller than the markers.




was obtained. The resonant f::gumcy was found
o be 11.18 * 0.01 Hz the maximum
amplitude of the oscillator was found to be 98.9 +
6.0 mm. A good estimate for B was found by
comparing the theoretical and experimantal
values. It was found to be 0.192 £ 0.046. Since
this value of f is very small compared with g,
my assumptions regarding @ and P were justified
and the results shown in the theory section are
valid. Fig.2 shows that resonance occurs at ®,.
From the theory as well as the cxperimental
values we know that @,>>f and

©=+0,* - B*. Therefore, @, ~ » was found to
be a reasonable approximation.
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