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A computer equipped with a data acquisition board samples the output
from a white noise generator. When the white noise is passed through a
low-pass filter, the autocorrelation function of the output is shown to
decrease exponentially with a decay constant equal to the time constant of

the low-pass filter.
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INTRODUCTION

This lab serves to validate the experimental
process laid out by J. Passmore and associates in
their paper “Autocorrelation of electrical noise:
An undergraduate experiment”! in which filtered
white noise is analyzed. A question is raised
about the nature of the output of white noise
which has been passed through a low-pass filter of
resistance R and capacitance C. The noise is
demonstrated to show correlation for time
intervals below RC when passed through such
filters. The autocorrelation function is developed
using Fourier transform methods, This lab looks
at the autocorrelation functions for white noisc
and four low-pass filters.

The autocorrelation function is a method for
determining how an input signal varies with time.
An incoming signal which is periodic should
exhibit perfect correlation at time intervals equal
to multiples of its period. This means that the
signal at such an interval is in the same state as
the initial input signal. The overall effect of the
autocorrelation function is to demonstrate how
well a signal correlates with itself over a period of
time. The calculation of this function involves
Fourier transforms. By transforming an incoming
signal into its frequency-space representation,
performing basic functions on this form of the
signal, and changing the altered signal into a time-
space representation again, we quickly calculate
the autocorrelation function of the signal,

The method of autecorrelation presented in this
is largely software based. In contrast Stevens R.
Miller? develops a mecthod in which an
autocorrelator can be built out of analog
components to compute the autocorrclation
function directly.
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The autocorrelation has a variety of applications
ranging from scatlering experiments to using
photon-counting and time-correlation that allows
one to better understand light statistics.

THEORY

White noise is defined as noise in which all
frequencics are contained within the noise in
equal amplitudes. This is equivalent to stating
that the modulus squared of the Fourier Transform
of the input noise voltage is independent of
frequency over a long sampling time.! When the
noise is passed through a low pass filter of
resistance R and capacitance C, a correlation
among the low frequency noise elements becomes
ap'garcnt within the span of the time constant.

he time-varying input noise voltage, VN(t),
can be described in linear circuitry terms by a
series of impulses. If a circuit’s response to an
impulse can be determined, then the response to a
time varying voltage is described by a sum of
impulses of appropriate magnitudes accompanied
by the appropriate delay response. The output
from the circuit at output time t is

Vo(t) = ﬁN(t)h(t— tyde, (1

where h(t) is the impulse response of the circuit at

input time 7. This means that the response of the
circuit to the input signal is the convolution of the
impulsc response function of the circuit with the
input signal.
The convolution theorem?* states that the Fourier
transform of a convolution of two functions is
equivalent to the product of the Fourier transforms
of the two functions bcmg convoluted (2):
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The autecorrelation function, Z(t), of the output
voltage is defined! as

Z(t) = [ Vo(m)Ve(r+ t)de. 3)

The autocorrelation function seeks to measure the
degree 10 which the output changes as a function
of time. The correlation theorem! allows the
Fourier transform of the autocorrclation function
to be written as the modulus squared of the
Fourier transform of the output noise voltage:
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Z(w) = v,,(m)vo(m)=|vo(m)| . (@)
The inverse Fourier transform of this function
simply needs to be taken in order to obtain the
autocorrelation function.

Books on linear circuit analysis show that the
impulse response function for a low-pass filter is a
decreasing exponential with a time constant of
RC!. This lcads to the Fourier transform pair of

t
h() = h(O)exL{-ie) 5)
and ;
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where h(0) is the output voltage at (=0 caused by
an initial impulse.

Combining cquation (2) and equation (4) yields
the relation
2[hORCF K

1+(0RC)*  1+(wRC)*’
Y

2(m)=|§r,(m)|

where K = |V.(m)|2[h(0)RC]2. Calculating the
inverse Fourier transform of (7) gives

Z)=K exp(— —) (8)

t
RC
where K'=K/(2RC). This shows that the
autocorrelation function is an exponentially
decreasing function with a time constant cqual to
RC, as is expected for a low-pass filter.

Normally, except for at t=0, the autocorrelation
function of white noise is zero everywhere. This
is because the noise voltages change rapidly
enough within short time intervals to not allow
any correlation to develop. This is primarily due
to the high frequency elements within the white
noise. When the noise is passed through a low-
pass filter, the high frequency clements are
eliminated and the output voltage varies more
slowly. With only lower frequency components
of the noise passing through the output, a
correlation over short time spans (below RC)
arises.

EXPERIMENT

A National Semiconductor Digital Noise Source
chip (MMS5437) serves as a white noise
generator. Other suggested noise generator
devices can be found in Horowitz and Hill.6 A
Macintosh Quadra 650 is equipped with a
National Instruments NB-MIO-16 Data
Acquisition board to acquire the noise voltages.
The data acuisition program is written in LabView
3.1, and all data analysis is carried out with Igor
Pro. Electrical schematics and program listings
are available upon request.

ANALYSIS AND INTERPRETATION

Each of the data sets represents a sampling of
10,200 voltages sampled at a rate of 6700 samples
per second. This equates to a voltage sample time
interval of 0.15 ms. For each low-pass filter a
single resistor of 3.05 k{2 is used. Four capacitors
ranging from 0.19 puF to 2.30 uF are used. The
units of the autocorrelation function are arbitrary.
Each of the autocorrelation functions have been
normalized by dividing the autocorrelation
function by the value of the autocorrelation
functionatt=0.

Figure 1 presents the results of the first 10 ms of
the autocorrelation function for output noise
voltage with no filter present.  As expected there
is an exact correlation only at t=0 for this
arrangement. After that the high frequency
components of the noise cause the output voltage
to change too quickly for any correlation to result.,
This is demonstrated in the figurc by the zero
baseline correlation fort > 0.

Figure 2 displays autocorrelation functions for
four low-pass filters. The figure lists the values of
the fitted time constants. The error in the fits are
not included in the figure for the sake of legibility.
The errors are included however in Table I below
which lists the calculated filter time constants as
well as the fit time constants. Figure 2 shows that
cach set of output noise voltages has a significant
correlation for a time interval t < RC. In each
case the average voltage is subtracted out before
the autocorrelation is calculated.

The resistor and capacitors used in this
experiment were measured using a General Radio
RLC digital bridge. The error reported in those
measurements reflects an approximated value
based upon the fluctuating reading for the
component. The error in the fitted time constant
is computed using parameters taken directly from
Igor Pro’s fit function. In Igor Pro, each set of
data is fit to the function



Z(t) = KO+ Klexp(-K2*t). (10)

Table Il presents the valucs for the fit constants
for each filter along with their associated error.
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FIG. 1. Autocorrelation function of the output voliage of
the noise generator with no low-pass filter present. The
autocorrelation function was calculated over 10,200
voltages measured 0,15 ms apart. The plot is rormalized by
dividing the autocorrelation function Z(1) by the value of the
autocorrelation function at =0,

Table 1. Values for the time constants of four low-pass
filters are listed here as computed from measured values of
R and C along with the results of the individual fits, The
value of R for cach case is 3.05+ 0.01 kQ).

Cakulated Time  Fitted Time
CuF) Conslant (ms) Constant (ms)
0.19£0.01 0.5610.03 0.55+£0.01
034+0.01 1.4+ 003 1.09+ 002
0.35+0.01 2301004 2161001
2.30+0.01 7.01 :E 0.05 9.09 £ 007

Table II. Values for the fit constants for each of the low
pass filters along with their associated errors. These values
are calculated from a lcast squares expoacntial fit performed

i lgor Pr

C(uF) Karb. units) Kl{arb. units) K2 (s)

0.185 -0.003 100001 1817 £ 28
0.001

034 0.02+£0003 1.02%0.01 921 +18

0.75 001£0001 1010003 463+30

230 -0.19 £ 001 1.12£0.01 1101

The error in the fitted time constant is calculated
by averaging the error in tfit of 1/(K2-6K2) - 1/K2
and 1/K2 - 1/(K245K2).

1.0 A RC=0.55ms|[”
O RC=1.09ms
& RC=2.16ms
0.8 ¥ ! 0 RC=9.09ms

Autocorrelation Function (arb. units)

TR TS [
| 0 friikite g MU

Time (s)

|
10x10°

FIG. 2. Autocorrelation function of the output voltage of
the noise generator with various low-pass filters present.
The autocarrelation functions were calculated over 10,200
voltages measured 0.15 ms apart, The plot is normalized by
dividing the autocorrelation function Z(1) by the value of the
autocorrelation function at t=0. The lines represent least
squares fits made over a 10 ms interval of the
autocorrelation function

DISCUSSION

Figure | is straightforward in demonstrating that
unfiltered white noise is uncorrelated over any
length of time. The graph is a confirmation of this
fact. Figure 2 serves to demonstratc morc
interesting phenomena. One of the first items
noticed when inspecting the graph is that the
autocorrelation functions appear to oscillate
sinusoidally as they approach an asymptotic limit.
This would seem to indicate that there could be
some residual structure present in the signal which
the autocorrelation function is incorporating. Itis
possible that this could be a 60 Hz signal which is
riding along with the noise. One method of
testing this case would be to create an adding
circuit which would add an amplified 60 Hz signal
to the noise and pass the combined signal through
the filter and see what the autocorrelation function
looks like.



By inspection of Table II and Figure 2, it scems
that each of the autocorrelation functions
approaches a slightly negative asymptote. The
noise originally rests on some DC voltage. When
the autocorrelation function is calculated with the
DC offset present, the normalized autocorrelation
functions approach a large non-zero limit. In
order to have the function limit approach zero for
long time intervals, the average output voltage is
subtracted from the data set. J. Passmore suggests
that a bias is introduced because the average
voltage is subtracted from a finite set of voltages
and this leads to a negative asymptote.! He shows
that as more sample points are taken, the effects of
the negative bias are reduced so that a sampling of
10,200 voltages are enough to ensure that the
effects of the negative bias are negligible.

Up to this point very little has been said as to
how well the calculated time constants compare
with the fitted time constants. The first three time
constants in Table I agree within 6% of each
other's values, and the first two are within
tolerable error of each other. The data for these
filters fit the theory remarkably well. The fourth
filter fitted time constant though is off from the
expected calculated time constant by 30%. The
first three filters are fit over a period of 10 ms (68
points) and yield the aforementioned degree of
consistency.

A fit over the same time interval for the fourth
filter produces a value which is in disagreement
with the expected value. When the fourth filter is
fit over a time interval roughly twice as long (150
points), a fitted time constant of 7.46 x 0.19 ms
results. This is much closer to the expected 7.01 &
0.05 ms calculated time constant. This could have
resulted because the autocorrelation function
fluctuates slightly (possibly due to a resident
frequency structure), so enough data points were
not averaged over in order to gain an accurate
representation of the exponential decay. However
if the fourth filter fit is averaged over 200 points,
the time constant drops further to a value of
approximately 6 ms. This could be explained by a
sinusoidal variation being present and the fit was
covering a region at which this variation was
reaching a minimum. If this is the case, the
solution to the problem is to simply take the fit
over an even longer time interval to see if the
fitted time constant approaches its expected
calculated valuc. If there is a sinusoidal influence,
it may suffice to average over one full period of
the sinusoidal variation in order to obtain the
expected value for the time constant,

The data in Figure 2 represents only one
calculated autocorrelation function which has
been normalized. The data presented by Passmore

calculated on sets of 10,200 points. Tt is possible
that the sinusoidal fluctuations might average out
as more autocorrelation functions for the same
filter are calculated. If the Figure 2 in Passmore's

article is examined,! a small sinusoidal variation
in the autocorrelation functions can be detected.
These variations would fit with the hypothesis that
the variational effects decrease with an average of
normalized autocorrelations. The variations
would also fit the explanation that there was some
resident structure in Passmorc’s circuit as well.
An cxccllent continuvation of this experiment
would be to delve into determining the source of
these sinusoidal variations.

CONCLUSION

The data from the four filters indicates that the
autocorrelation function of white noise passed
through a low-pass filter decreases exponentially
with a decay constant equal to the low-pass filter's
time constant. The data also clearly demonstrates
that a strong correlation exists in the noisc output
for noise passed through a low-pass filter when
the correlation time interval is less than the filter's
time constant.

A number of extensions to this experiment
immediately leap to mind. Observations could be
made on circuits ranging from bandpass filters to
cascaded low-pass filters. One could expand this
approach to attempt to pull a weak simple signal
from a noisy source. This experiment serves as a
nice stepping stone into the realm of signal
processing. It touches on key concepts of Fourier
transforms, noise, correlation, convolution, and
lincar circuits.
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