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This experiment is designed to use the Brownian motion of small spheres in water to measure the
diameter of those spheres. A laser is shone on a glass vial containing the spheres mixed with water.
The light is reflected π/2 degrees into a PMT or photo-multiplier tube. We then use a Brookhaven
software program to find the intensity correlation function over a span of five minutes. We find
that the correlation functions always decay exponentially with respect to the variable time step
τ . We also find that as the size of the sphere increases, the rate at which the correlation between
intensities decays with respect to τ decreases. We do monodispersive and polydispersive runs. The
mono dispersive runs have spheres of 51 nm, 96 nm, and 304 nm while the polydispersive runs use
combinations of 51 and 304 nm spheres and 96 and 304 nm spheres. For the monodispersive runs
we find an average error of 35%. For the polydispersive runs we find an average error of 24%.

I. INTRODUCTION

The Brownian motion experiment is used to discover
the size of particles that undergo random motion as a re-
sult of collisions with the molecules of a fluid. The phe-
nomena of random motion was first observed with parti-
cles ejected by pollen immersed in water in 1827. Albert
Einstein then explained it as resulting from the impact of
water molecules on the particles. Einstein would go on to
use Brownian motion to find the size of water molecules
and confirm the existence of atoms. We use the same
experiment to determine the size of the particles, not the
water molecules.

In this experiment our particles are polystyrene
spheres immersed in a vial of water. A laser is shown
on the vial and the light interacts with the spheres. The
light is then reflected off the spheres and into a PMT
light detector facing the vial and located at a right angle
to the laser.

The water molecules collide with the polystyrene
spheres and bump them around in random directions.
The spheres scatter the laser light, so changes in their
position mean changes in the intensity distribution of the
reflected light at the detector. The intensity at the detec-
tor as a function of time is therefore a reflection of how
the particles are moving. How the particles move under
known conditions tells us about their size.

We use intensity and electric field autocorrelation func-
tions with a variable time step τ and the Siegert relation
to form our mathematical model. These functions de-
termine how well correlated two measured intensities are
at some time interval τ away from each other. This in-
formation about correlation holds information about the
size of the spheres which we can recover.

II. THEORY

We can mathematically model the intensity autocor-
relation function that we would expect to see given dif-
ferent sized polystyrene spheres. We know how to de-
scribe the incident monochromatic light, and we can find

a probability density for the position of the polystyrene
spheres. Since the spheres are what reflects the incident
light, knowing these two things can bring about a de-
scription of what exactly we expect to be reflected.

We begin by considering the incident monochromatic
light on the sample

~Eincident = ~E0RE[ei(ωt−
~ki·~r)] (1)

where ~E0 is the amplitude of the electric field, RE indi-
cates the real part of the quantity, ω is the angular fre-

quency of the electric field oscillations, ~ki is the incident
wave vector, and r is the vector from the spot where the
light hits a sphere to the PMT detector. Our scattered
light has a similar description

~Escattered = ~E0RE[ei(ωt−~q·~r)] (2)

where ~q is defined as the scattering vector or

~q = ~ki − ~ks (3)

with ~ks as the wave vector of the scattered wave. We
consider this scattering to be elastic such that

|~ks| = |~ki| =
2π

λ
(4)

where λ is the wavelength of the light. This assumption
inherently includes the assumption that there is no en-
ergy lost in the scattering collisions. We know that the
light is scattered at a right angle, so even thought the
magnitudes in Eq. 4 are equal, q will be non-zero.

Now we must briefly take a qualitative look at the
Brownian motion of the polystyrene spheres in the solu-
tion. Standard Brownian motion is the random motion
of a small particle immersed in a fluid. The random mo-
tion is the result of many collisions between the particle
and the fluid molecules. As thermal energy causes them
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to move around, the fluid molecules bombard the par-
ticle. There are many more water molecules than test
particles, and the thermal motion of the water molecules
is random. The bombardments of the particle are then
also random, so there is no reason to expect that the par-
ticle would be bumped in one direction more than any
other. Therefore, we describe the probability density for
the position of the particle with a Gaussian curve given
as

ρ(r, t) = (4πDt)−
3
2 (e)−

r2

4Dt (5)

where r is the distance of the particle from its original
position, and D is the Einstein-Stokes coefficient.

The Einstein-Stokes coefficient is developed as a diffu-
sion constant that considers friction. First, consider the
Einstein diffusion coefficient for free diffusion

D =
kbT

f
(6)

where kb is the Boltzmann constant, T is the absolute
temperature, and f is the friction. The contribution from
Stokes is the expansion of the friction term. Stokes found
that the friction on a single particle with diameter d in a
fluid of viscosity ν was

f = 3dπν, (7)

thus completing the Einstein-Stokes coefficient and Eq.
5.[1]

The probability density in Eq. 5 is important because
it describes the nature of the possible position of each
polystyrene sphere in the fluid. The spheres scatter the
light, so the position impacts how the light is scattered.
This is the key point. The positions of the spheres de-
termine how the light is scattered, and the nature of the
reflection of the light determines how we think about the
electric field and the intensity of the light at the detector.

We describe the normalized electric field auto correla-
tion function as the average of the products of all electric
fields some time step τ away from each other

Eτ =
< Er

∗(t)Er(t+ τ) >

< I(t) >
. (8)

With E as the electric field correlation function, I as the
intensity at the light detector, and the brackets indicating
the average that we use. It is important to note here that
E is not an electric field, but a measure of correlation
between two electric fields of varying time steps. Eq.
8 is called the normalized electric field autocorrelation
function. It helps to think of

τ = (n)dt (9)

where dt is the smallest possible time step between elec-
tric field readings, and n is constant for the process that

gives one electric field correlation value, but differs for
different correlation values.

Eq. 8 describes taking the electric field at time t and
multiplying it by the electric field τ away. We then move
to the electric field dt away, and this time value becomes
the new time t. We multiply this electric field by the
field at τ away, and the process is repeated throughout
the entire set of time values. These products are then
divided by the intensity at t. This average becomes one
data point. The independent variable is τ , meaning that
τ is constant for an individual data point, but different
points use different τ values.

The purpose of the autocorrelation function is to de-
scribe the correlation between the electric field at time
t and at time t + τ . If τ is sufficiently small, then the
polystyrene spheres will not have had enough time to
move enough to significantly change the reflection of the
light, so the detected intensity will be very similar to
what it was at t. However, the larger the time interval,
the more motion the Brownian particles have undergone.
The motion of the spheres is random, so the change in
the reflection of the light is random as well. That means
that the larger τ gets, the less the intensities at t and
t+ τ are correlated, until finally at some point their rela-
tionship is random. The autocorrelation function is the
way we determine this correlation.

We describe the intensity correlation function in a sim-
ilar way to Eq. 8 using the normalized intensity autocor-
relation function

I(τ) =
< I(t)I(t+ τ) >

< I(t) >2
. (10)

For the rest of this paper, we will drop the description
“normalized” and simply refer to Eqs. 10 and 8 as the
correlation or autocorrelation functions. Again, one must
remember that Eqs. 10 and 8 are measures of correlation,
not intensities or electric fields.

The major key to the theoretical development of the
mathematical model for Brownian motion is the Siegert
relationship that relates Eqs. 8 and 10. The detector only
measures intensity, which is the product of the electric
field and its complex conjugate. It was initially thought
that taking the complex conjugate would cause the phase
information to be lost, but Siegert showed that the phase
information was actually retained, showing that

I(τ) = 1 + |Eτ |2 = 1 + ke−2Dq2τ (11)

thus giving us a mathematical model for what to expect
for the intensity correlations of our detected light given
Brownian motion in the polystyrene spheres. Here, k is a
coefficient that allows us to find the best fit for our data.
In the case of two sizes of polystyrene spheres being im-
mersed in the same vial simultaneously, we only have to
modify our model slightly. Notice that the exponential
in Eq. 11 depends on the diameter of one polystyrene
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sphere. With two different sizes of spheres, the intensity
correlation function will follow a superposition of two ex-
ponential decays, each exponential term corresponding to
one spheres diameter. In that case we have

I(τ) = 1 + |Eτ |2 = 1 + ke−2Dq2τ + k1e
−2D1q

2τ (12)

where D1 is the Einstein-Stokes coefficient corresponding
to the second spheres diameter.

III. PROCEDURE

The apparatus that we use for this experiment consists
of a Melles-Griot He-Ne laser, a PMT light detector, and
a test chamber. The test chamber is completely closed
except for one hatch to insert and remove our test vials.
It has a clear glass slit in the bottom for the light to
enter the chamber, and another for the reflected light to
escape. The vials themselves are made of glass with a
plastic screw on lid and contain a mixture of polystyrene
spheres and water. The entire apparatus is a product of
Brookhaven Instruments.

It is also advised to label the vials with the size of the
spheres that it contains simply to avoid confusion. The
laser only interacts with a small portion of the bottom of
the test chamber, so the test vial only needs to be a few
centimeters full.

The laser is mounted on a metal rail linked to the bot-
tom of the test chamber for stability and shines on the
bottom of the test vial. The PMT is on a similar rail
linked to the test chamber at a right angle to the laser.
We use a right scattering angle, although this is not a
necessity. Any angle will do, as long as it is well known.
It is important, however, to make sure that the laser and
detector are stable to ensure consistent results.

The procedure from this point experiment was rel-
atively straightforward. The vial was put in the test
chamber after it had been thoroughly wiped to remove
any impurities on the surface of the glass such as fin-
gerprints or dust. In our experiment, we mixed decahy-
dronaphthalene (C10H18) throughout the chamber using
a Brookhaven Instruments vacuum filter prior to record-
ing data. We did this because the C10H18 has a refractive
index similar to that of glass, so there would not be any
distortive refractions of our monochromatic light by the
C10H18. It also eliminated any air bubbles in the cham-
ber that would have a similar distortive affect. It is not
necessary to use glass and C10H18 specifically, but this
is a good combination. We used the Brookhaven soft-
ware program to track the intensity detected for us. This
particular software program takes initial conditions into
account such as the temperature of the vial and the re-
fractive index of water. These things do have an impact
on the results, so it is recommended that any program
used be able to account for them. We set the program
to take data from the detector for intervals of five min-
utes. We also did two runs with each size sphere. In

FIG. 1: Intensity correlation function for spheres size 51 nm as
a function of the time step and the corresponding exponential
fit. The data points (red) are fit to an exponential curve
(blue).

some cases, the runs were redone as a double checking
mechanism or if we suspected the data were outliers.

We have a mechanism that allowed us to control the
temperature of the test chamber via water tubes. How-
ever, the link between the water tubes and the entrance
to the test chamber was leaking at the time of the exper-
iment, so the system was not used, and the temperature
setting on the software program was left at room tem-
perature.

IV. DATA ANALYSIS

The exponential fits of the intensity versus time step
graphs allow us to calculate the diameter of the diffused
spheres immersed in the water. The graphs we use have
the intensity correlation function on the y-axis and the
time step τ on the x-axis. We are therefore measuring
the correlation in intensity as a function of the size of
the time step. The exponential coefficient from Eq. 11 is
where the information about the diameter of the spheres
lies, and so the exponential fit of our data points is what
we are interested in.

Each set of data is normalized to one such that the
total correlation is one at all times. That is, every data
point is divided by the value of the last data point, so we
terminate or data set at 1. In almost all runs, there were
a large amount of data points of value one. This made
the graphs look like “L” shapes and therefore difficult to
examine and present. We are interested in the part of
the data where it changes from decreasing nearly verti-
cally to decreasing nearly horizontally. This is what tells
us the most about the change of the intensity correlation
function in response to τ . Therefore, we exclude all data
points that have an intensity correlation function value
of less than one. Ideally there would not be any, but they
are found due to noise in the system. We also exclude
any function value with a τ value larger than that of the
initially excluded point. This allows us to more accu-
rately present the change in correlation function value in
response to τ .

Fig. 1 shows the data points and exponential fit for
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TABLE I: Size of the spheres, measured value, and percent error.

Known Sphere Size Measured Size Percent Error

51 nm 32.9 ± 0.82 nm 35.5%

96 nm 64.6 ± 1.4 nm 32.7%

304 nm 192.6 ± 1.6 nm 36.6%

51 nm, 304 nm 52.8 ± 8.2 nm, 197.05 ± 14.0 nm 3.5%, 35.2%

96 nm, 304 nm 73.8 ± 3.8 nm, 204 ± 9.6 nm 23.1%, 32.9%

FIG. 2: A graph showing the intensity correlation function
for spheres of 96 nm. The data points are red crosses and the
fit line is in blue.

FIG. 3: A graph showing the intensity correlation function
for spheres of 304 nm. The data points are red crosses and
the fit line is in blue.

spheres of diameter 51 nm. We did two runs for each
sized sphere, although we only show one graph for each
here. Using the exponential coefficient from the fit in Igor
Pro for both runs with spheres of this diameter and Eq.
11 we calculate the radius of the spheres to be 32.9± 0.8
nm. This was found by averaging the values calculated
from each of our two runs. We will calculate all of our
diameters in this way. We know that the polystyrene
spheres used here have a diameter of 51 nm, yielding an
error 35.5%.

Fig. 2 we see the intensity correlation function versus
the time step for spheres of diameter 96 nm. Again using
the exponential coefficient, we calculate the diameter of
the spheres to be (64.4 ± 1.4 nm). We know that the
spheres actually have a dimeter of 96 nm, indicating an
error of 32.7%.

Fig. 3 shows the data for the spheres of diameter 304
nm. This was the largest diameter of the spheres for a

FIG. 4: Intensity correlation functions for spheres of 51 nm
(red), 96 nm (green), and 304 nm (blue). Note that the larger
the sphere is, the slower the decay of the correlation.

FIG. 5: Exponential fit coefficient values of various curves
versus the size of the corresponding polystyrene spheres.

monodisperse solution that we used. We calculate the
diameter here to be 191± 0.02 nm. This means we have
an error of 37.3%. Also notice from Fig. 4 that as the di-
ameter of the spheres increases, the intensity correlation
function flattens out.

This phenomena is shown in Fig. 4. Graphically we
can see that this implies that the smaller a sphere is, the
less correlation there is between intensity values. This
makes sense because the larger a sphere is, the more iner-
tia it will have. Therefore, if two spheres are bombarded
the same amount by the water molecules, the smaller of
the two will move more in the same time interval because
it has less inertia to resist moving. More movement by
one size of sphere than the other in an equal time interval
means the intensity will correlate less after light reflects
off the smaller spheres.

Fig. 5 shows the exponential coefficient values of cer-
tain exponential fits and the size of sphere that the fit
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FIG. 6: Intensity correlation functions for spheres of 51 nm
and 304 nm in the same vial. The data points are red crosses,
and the fit curve is in blue.

FIG. 7: Intensity correlation functions for spheres of 96 nm
and 304 nm in the same vial. The data points are red crosses,
and the fit curve is in blue.

corresponds to. As shown in Eq. 11 the exponential co-
efficient which we choose to name α for this experiment
is

α = −2Dq2. (13)

This value is a measure of how fast the exponential fit
decays. In Fig. 5 we see that as the size of the spheres
increases, the exponential coefficient decreases as previ-
ously mentioned.

We also used polydispersive samples, meaning we
mixed two sizes of spheres in the same vial. We used a
combination of 51nm spheres and 304 nm spheres, as well
as a combination of 96 nm spheres and 304 nm spheres.
When calculating the diameter of these spheres, we must
use Eq. 12 for the fit because each exponential coefficient
holds the information for one diameter. Two diameters
being used therefore calls for two exponential terms. For
the combination of 51 nm and 304 nm spheres we find the
diameters to be 53± 8 nm and 197± 14 nm respectively.
For the 51 nm spheres we find an error of 3.5% and for
the spheres of 304 nm we find an error of 35%.

The graph of the data for the combination of spheres
of 51 nm and 304 nm is shown in Fig. 6.

We also have a polydispersive mixture of 96 nm spheres
and 304 nm spheres. In this case we find the spheres to

be of sizes 74 ± 3.8 nm and 204 ± 10 nm respectively.
These have corresponding errors of 23% and 33%, again
respectively.

The graph of the data for the combination of spheres
of 96 nm and 304 nm is shown in Fig. 7.

Notice that in every case so far, the data points have
decreased in a well formed exponential curve as a function
of τ . This is exactly what we would expect given Eqs.
11 and 12.

The errors in this experiment could be due to the
unique features of the PMT detector. The detector we
use is a high precision instrument, meaning that any cal-
ibrations and preset conditions are highly sensitive. If
any initial condition or parameter is incorrect, this could
cause a significant amount of error.

One other potential source of error is the fact that the
detector was tilted slightly away from the primary reflec-
tion in order to avoid excessive noise being brought into
the PMT. That is, the reflection was close to 90 degrees,
but was not exactly. Adjusting the position of the tube
solves the initial problem, but also creates potential error
in the results.

V. CONCLUSION

In this experiment we conclude that the smaller a
sphere is, the less correlation there is between intensity
values. We make this conclusion because the intensity
correlation functions become flatter as the size of the
sphere increases. That means that the derivative of the
curve on the portion that we examine becomes smaller as
the size of the spheres increases. We conclude that this
is a result of the larger spheres having more inertia and
therefore being more resistive to the motion that would
cause lack of correlation in intensities from reflected light.
We also find the diameters of the spheres we use to be
those found in table I. These correspond to known sphere
diameters of 51 nm, 96 nm, 304 nm, 51 nm and 304 nm,
96 nm and 304 nm respectively. We find that the inten-
sity correlation function fits to a decreasing exponential
in every case. This means that as the time step τ in-
creases, the correlation of the intensity at t + τ to the
intensity at t decreases exponentially. We also notice
that this fits our model perfectly. We finally conclude
that the error in this experiment is associated with either
the sensitive initial parameters and settings of the PMT
detector or the fact that the detector was intentionally
tilted away from the main area of reflected intensity.
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