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In this experiment we examined the impact of the gravitational force on star formation. We
changed the explicit radial dependence of the gravitational force and calculated the minimum mass
required for a gas cloud to form a star using Mathematica. We then varied the gravitational
constant in order to have the minimum mass required under our modified gravitational forces match
the minimum mass required under the traditional force law.

I. INTRODUCTION

The motivation for this paper extends from the ques-
tion that physicists of the future may have to ask one
day. Suppose that we live in a time where all of the laws
of physics are specified completely and exactly; that is
we know everything from the fundamental particles, the
various forces, how to perfectly marry quantum mechan-
ics and relativity, etc. What do physicists do next? The
interesting thing about this question is the fact that we
can ask this question to a degree now. In this paper we
examine the impact of changing the structure of New-
ton’s law of universal gravitation on the process of star
formation.

II. THEORY

In order to examine the impact of changing the grav-
itational force on star formation we first derive a gener-
alized form of the law of universal gravitation to allow
for a changing number of dimensions. Then we derive an
expression for a the Jean’s Mass, a factor that limits the
possibility of star formation.

A. Gravitational Force Derivation

Newton’s law of universal gravitation states that the
gravitational force between two point masses m1 and m2

separated by a distance r is given by

F = G
m1m2

r2
, (1)

where G = 6.673 ·10−11 m3kg−1s−2. However, this law is
hiding the true nature of forces from point sources. We
can think of a point source as generating a field that is
diluted over the surface area of a sphere, 4πr2. Using
this quantity as our denominator for the force, we need
to redefine the gravitational constant to be Newton’s G
multiplied by 4π, G = 8.37 · 10−10 m3kg−1s−2. Now we
can write a new expression for our force

F = Gm1m2

4πr2
, (2)

In order to generalize the force of gravity to other num-
bers of dimensions, it will be helpful to generalize spheres

FIG. 1: Schematic showing the (n-1)-sphere and the n-ball
for n=1, 2, and 3. Taken from [3].

to other numbers of dimensions. The (n-1)-sphere, is
the set of all points equidistant from a center point in Rn

[2]. From this definition, the shape commonly referred to
as a circle is a 1-sphere and the object commonly referred
to as a “sphere” is actually a 2-sphere as shown in Fig.
1. It is important to note that (n-1)-sphere is the surface
formed by the points equidistant from the center, not the
region bounded by that surface; the 2-sphere is the skin
on the basketball, not the air filling it.

The concepts of circumference for the circle and the
surface area for the common sphere may be generalized
to the surface volume of the (n-1)-sphere. The surface
volume of an (n-1)-sphere with radius r is given by

Sn−1 =
nπn/2

Γ
[
n
2 + 1

]
rn−1

, (3)

where Γ is the gamma function which generalizes the fac-
torial function to a complex domain by the relationship
Γ [n] = (n − 1)! [2]. The gamma function is used here
because the domain of the factorial function is the non-
negative integers and we need to allow for both negative
and non-integer numbers. By substituting n − 1 = 1 we
recover the circumference of a circle, S1 = 2πr, and by
substituting n − 1 = 2 we recover the surface area of a
common sphere S2 = 4πr2.

We can now generalize this argument to be valid in
any number of dimensions n, since the force of gravity
will always be proportional to the product of the masses
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and inversely proportional to Sn−1,

Fn = Gn
m1m2

Sn−1

= Gn
m1m2Γ

[
n
2 + 1

]
nπn/2rn−1

. (4)

At this point I will emphasize that our problem exists in
three spatial dimensions. The strength of the field due
to a point source is diluted over the surface area of the
2-sphere. This is the crux of the 1/r2 force laws that we
have in everyday physics. In our argument we are consid-
ering a force law where the field due to a point source is
diluted over the surface volume of a higher dimensional
sphere. We are not considering the formation of stars in
dimensions other than three; we are examining how stars
would form in three dimensions if we borrowed a force law
from a universe with a different of spatial dimensions.

B. Star Formation

Our goal is to investigate how altering the structure of
the gravitational force law impacted the process of star
formation. In order to do so, we break down the process
of star formation into its key steps. We begin by treating
a cloud of molecular hydrogen H2 as an ideal gas. We
then consider the fluid dynamics of a coalescing cloud
of gas, which allow us to fully specify the gravitational
collapse of the gas cloud into a star. The derivation in
this section follows closely to the derivation shown in [1].

1. Equation of State

In order to begin our journey from a cloud of molecular
hydrogen gas to a star we will start by considering the
gaseous nature of the hydrogen cloud. We can make the
assumption that a cloud of molecular hydrogen gas will
behave as an ideal gas. The ideal gas assumption is a
valid approximation in this problem since the gas cloud is
in a low pressure environment. The ideal gas law relates
several key physical quantities of an ideal gas,

PV = NkT, (5)

where P is the pressure the gas is under, V is the volume
of the space that the gas is occupying, N is the total num-
ber of molecules in the gas, k is Boltzmann’s constant,
and T is the temperature of the gas, which we assume to
be roughly constant in this case. We can also consider
the mass density of the gas cloud, which is given by the
mass of the cloud divided by its volume,

ρ =
NµmH

V
, (6)

where mH is the mass of a hydrogen atom and µ is the
molecular mass of the gas cloud. Since our gas cloud

FIG. 2: Arbitrary volume bounded by a surface

consists entirely of H2 molecules, µ = 2. By substituting
Eqn. 6 into Eqn. 5 and simplifying we obtain a form of
the equation of state,

P

ρ
=

kT

µmH
≡ a20. (7)

If we assume that the temperature of the gas cloud is
constant, then the ratio of pressure to density of a gas
cloud is equal to the constant a20.

2. Calculus of Fluid Dynamics

Given the fact that the molecules in the gas cloud
are always moving, we must consider equations to model
their motion in order to get an accurate description of the
mechanics of the cloud. In general there are two ways to
examine the flow of molecules within a gas cloud. The
first is to consider a particular point in space and cal-
culate the changes in the gas over time at that partic-
ular point. This process is called the Eulerian method.
In contrast, the Lagrangian method involves choosing a
reference frame where a particular gas particle is fixed.
Then we calculate the properties of the gas cloud over
time in this reference frame. In this section we develop
both Eulerian and Lagrangian time derivatives of the
density of the cloud. We will later use the Lagrangian
derivative in our calculations for gravitational collapse.

Consider an volume of gas V bounded by a surface S
as shown in Fig. 2. The shape of the volume does not
matter, but the volume must be bounded. Describing the
flow of mass through the entire surface at once would be
hard, but on an infinitesimal piece of the surface dS, the
flow of mass through that region is given by

ρ~v · ~dS, (8)
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where ~v is the velocity of the mass moving through dS
and ~dS is the vector normal to the infinitesimal surface
dS. Now we simply need to integrate over the entire
surface in order to determine the total flow through the
system, ∮

S
ρ~v · ~dS.

Note that this is the integral a vector field (the veloc-

ity) dotted with a normal surface vector ( ~dS) around a
closed surface (S), which means that we can apply the
divergence theorem and convert our surface integral into
a volume integral,∮

S
ρ~v · ~dS =

∫
V

[∇ · (ρ~v)] dV. (9)

So now we have an expression involving the total mass
flowing out of the system in terms of a volume integral,
which is useful because we can also easily express the
total decrease in mass of the system as a volume integral.
Since the total mass flowing out should equal the total
mass lost, we equate these integrals. The volume integral
of density yields the mass and taking a time derivative
of this integral gives us the rate of change of mass over
time,

− ∂

∂t

∫
V
ρ dV = −

∫
V

∂

∂t
ρ dV. (10)

Since our integral is only over spatial variables and the
density is assumed to be a continuous function, we can
exchange the order of the time derivative and the integral.
Now we can equate our two integrals and simplify,∫

V
∇ · (ρ~v) dV = −

∫
V

∂

∂t
ρ dV∫

V
∇ · (ρ~v) dV +

∫
V

∂

∂t
ρ dV = 0∫

V

[
∇ · (ρ~v) +

∂

∂t
ρ

]
dV = 0. (11)

The only way for the integral to be zero in general is if the
integrand is zero. By setting our integrand to zero and
expanding our derivatives we obtain the Eulerian time
derivative of the density,

∂ρ

∂t
+ ρ(∇ · ~v) + ~v · ∇ρ = 0. (12)

The Eulerian analysis fixes the coordinate system in
space and tracks the motion of the system through that
frame. Lagrangian analysis fixes the coordinate system
with respect to the object and tracks the system in that
frame. In order to formulate the Lagrangian derivative
we can use the fact that an infinitesimal change in posi-

tion ~dr is equal to the velocity multiplied by an infinites-
imal change in time ~vdt. Starting from the definition of

the full derivative, we obtain the Lagrangian derivative
of density

dρ =
∂ρ

∂t
dt+ ~dr · ∇ρ

dρ =
∂ρ

∂t
dt+ ~vdt · ∇ρ

dρ

dt
=
∂ρ

∂t
+ ~v · ∇ρ (13)

If we compare Eqn. 13 with Eqn. 12 we can see that the
Lagrangian time derivative of density is given by

dρ

dt
= −ρ(∇ · ~v). (14)

So now we have an expression relating the rate of change
of density of the gas to the velocity at which the gas is
moving.

3. Fluid Dynamics under Pressure

Since our hydrogen gas cloud is under pressure, we now
extend our analysis of fluid dynamics to describe fluids
under pressure. In general, pressure can be described as
force per unit area, P = F/A. In our situation it will be
more useful to consider force to be pressure multiplied by
area, F = PA. The particular area that we are interested
in is the surface area S of our arbitrary volume. The total
force on the surface S due to pressure is

F = −
∮
S
P dS = −

∫
V
∇P dV, (15)

where we once again have applied the theorem relating
closed surface integrals to volume integrals. From this
equation, the force per unit volume due to pressure is
−∇P . From here we can apply Newton’s second law,
~F = m~a = m(d~v/dt). Since we have the force per unit
volume we must also divide the right hand side of New-
ton’s second law by unit volume to use our result. Luck-
ily, the mass per unit volume is simply the density so our
expression for Newton’s second law becomes

−∇P = ρ
d~v

dt
=⇒ −∇P

ρ
=
d~v

dt
. (16)

Next we can apply a process similar to the formulation
of the density derivatives in the previous section. For our
Eulerian derivative, we have

d~v

dt
=
∂~v

∂t
+ (∇ · ~v)~v. (17)

Now we can substitute our expression for the time deriva-
tive of velocity developed in Eqn. 16 to see that

∂~v

∂t
+ (∇ · ~v)~v +

∇P
ρ

= 0, (18)
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assuming that pressure is the only source of force on our
gas cloud. It is also important to remember that our
gas cloud is also under a force due to gravity. In order to
account for this we must subtract the inward acceleration
due to gravity ~g from our previous equation,

∂~v

∂t
+ (∇ · ~v)~v +

∇P
ρ
− ~g = 0. (19)

Now we have an equation relating the acceleration of the
particles in the gas cloud. From here we can derive an
expression for the minimum radius that a gas cloud must
have in order to condense into a gas cloud.

4. Gravitational Collapse

In order to examine the gravitational collapse of the
gas cloud we will assume that our cloud is approximately
spherical with some radius r and initial uniform density
ρ0. Suppose that some spherical shell within the cloud
becomes more dense than the rest of the cloud. We can
write down the expression for the radial acceleration of
the cloud using Eqn. 19. The first two terms of this
equation constitute the shell,

0 =
∂~v

∂t
+ (∇ · ~v)~v +

∇P
ρ0
− ~g

0 =
d2~r

dt2
+
∇P
ρ0
− ~g (20)

d2~r

dt2
= −∇P

ρ0
+ ~g. (21)

Since all of these vectors are collinear, we can consider
only magnitude,

d2r

dt2
= −‖∇P‖

ρ
+ g. (22)

Since our gas cloud is spherical we have azimuthal and
polar symmetry. This symmetry mean that the gradient
of the pressure should only have a radial dependence. We
will approximate the radial dependence of ∇P by P/r.
Also, due to the equation of state previously derived we
know that P/ρ0 is a constant that we defined to be a20.
By substituting we can see that

−‖∇P‖
ρ
≈ − P

rρ0
= −a

2
0

r
, (23)

and thus our acceleration equation becomes

d2r

dt2
≈ −a

2
0

r
+ g. (24)

Next we will calculate the acceleration due to gravity.
Recall our equation for the generalized law of universal
gravitation with n dimensions of gravity,

Fn = Gn
m1m2

rn−1
Γ
[
n
2 + 1

]
nπn/2

. (25)

In this problem we will let m1 be the mass of the spherical
shell and m2 be the mass of the rest of the cloud, which is
essentially the total mass of the cloud since we are taking
a small shell. The mass of the cloud m2 is 4πr3ρ/3.
In order to obtain the acceleration due to gravity g we
simply need to substitute for m2 and divide by m1,

g = Gn
4πρ0
3rn−4

Γ
[
n
2 + 1

]
nπn/2

. (26)

So the acceleration of our spherical shell is

d2r

dt2
≈ −a

2
0

r
+ Gn

4πρ0
3rn−4

Γ
[
n
2 + 1

]
nπn/2

. (27)

In order for the shell to collapse into a star we need the
radial acceleration to be negative,

d2r

dt2
< 0

−a
2
0

r
+ Gn

4πρ0
3rn−4

Γ
[
n
2 + 1

]
nπn/2

< 0

a20
r
< Gn

4πρ0
3rn−4

Γ
[
n
2 + 1

]
nπn/2

3a20
4Gnπρ0

nπn/2

Γ
[
n
2 + 1

] < r5−n(
3a20

4Gnπρ0
nπn/2

Γ
[
n
2 + 1

])1/(5−n)

< r. (28)

We define the Jean’s Radius rj to be the minimum
radius required for a spherical gas cloud to collapse into
a star,

rj =

(
3a20

4Gnπρ0
nπn/2

Γ
[
n
2 + 1

])1/(5−n)

. (29)

Another more commonly referenced quantity is the
Jean’s Mass of a gas cloud, which is derived from
the Jean’s Radius using the relationship between volume
mass and density,

Mj =
4

3
πρ0

(
3a20

4Gnπρ0
nπn/2

Γ
[
n
2 + 1

])3/(5−n)

. (30)

We can then substitute in the constants which equal a20
to obtain our final expression for the Jean’s Mass,

Mj =
4

3
πρ0

(
3

4Gnπρ0
kT

µmH

nπn/2

Γ
[
n
2 + 1

])3/(5−n)

. (31)

We now have a single expression that places a lower
bound on the mass required for a gas cloud in order to
collapse into a star. Note that for a given choice of di-
mension, the only non-constants in the equation for the
Jean’s mass are the initial density and temperature of
the gas cloud.
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TABLE I: Parameter Settings for each Calculation Trial

Trial ρ T

1 ρmin Tmin

2 ρmin Tmax

3 ρmax Tmin

4 ρmax Tmax

III. DATA AND ANALYSIS

The Jean’s mass has two input parameters: temper-
ature and density. So given an initial temperature and
density, the minimum mass required for a hydrogen gas
cloud to condense into a star can be calculated. Re-
alistic initial temperatures are between Tmin = 10 and
Tmax = 30 K and realistic starting densities are between
ρmin = 1010 and ρmax = 1012 hydrogen masses per unit
volume [1]. Given this variation in the ranges of realis-
tic values for our input parameters, the Jean’s mass was
calculated at four different settings of temperature and
density as summarized in Table I.

The Jean’s mass was calculated for values of n be-
tween one and nine at each of the four settings of input
parameters from Table I, excluding n = 5 due to the dis-
continuity in Eqn. 31. The Jean’s masses are plotted
versus then in Fig. 3. Notice how the graph exhibits a
radical behavior with a vertical asymptote at 5, which is
to be expected given the discontinuity. It is also worth
mentioning that the trials that are on the extremes of the
ranges for any given choice of n are the two trials with a
mix of maximum and minimum initial parameters.

The goal of this investigation was to determine if a
modified force gravitational force law would be able to
account for star formation as viewed in three dimensions.
The force law has been modified to allow for different
radial exponents. As shown in Fig. 3, the minimum
mass required for a cloud to form a star varies greatly
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FIG. 3: Pplot of Jean’s Mass versus n. Since the Jean’s mass
varies by over 100 orders of magnitude, a logarithmic scale is
used for the abscissa.

TABLE II: Order of Magnitude of G for choices of n

n log10[G]

1 -38

2 -23

4 4

6 33

7 48

8 62

9 76

depending on radial dependence. For dimensions other
than three, I want to recover the behavior we see when
n = 3. In order to do so I will change the gravitational
constant in the other dimensions. I set the Jean’s mass
equation for n 6= 3 equal to the value of the Jean’s mass
for n = 3 and solved for what the gravitational constant
would have to be in order for the Jean’s Mass when n 6= 3
to equal the Jean’s Mass when n = 3. The order of
magnitude for the new values of G are shown in Table II.
These new values of G differ by 114 orders of magnitude
as the dimension varies from n = 1 to n = 9.

IV. CONCLUSION

Our original question was simple: are the laws of
physics as we know them unique? The answer to this
question is incredibly complex and we as a community of
physicists are nowhere near approaching the full answer.
But we can approach pieces of this problem. When con-
sidering the problem of forming a star, we could choose a
completely different radial dependence than the 1/r2 de-
pendence that we see in everyday life. Using these new
radial dependences, we were able to calculate the Jean’s
mass for given initial conditions. We were able to then
calculate the order of magnitude that we would have to
change the gravitational constant to in order to recover
the behavior that we see in three dimensions.

However, if we were to use these altered force laws in
other systems, such as dropping a ball on the Earth’s
surface, they would break down. If we were to calculate
something as simple as the acceleration due to gravity at
the Earth’s surface with these modified force laws, these
calculations would be inaccurate. Developing alternate
theories to explain the phenomena that we know can be
explained by the current accepted physical theories is a
challenging yet exciting problem.
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