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Photon correlation spectroscopy (PCS) is used to determine the diameter of spherical polystyrene
(standard value d = 96 £ 3.1nm) in water. Assuming the sample exhibits Brownian motion and is
dilute, an autocorrelation function of the intensity is used to measure the diffusion constant, which
contains information about the polystyrene radii. Direct analysis through Brookhaven Instruments’
software determines that the molecules have a diameter d = 108.6 £+ 4.5nm, which is within two
standard deviations of the accepted value. Independent verification of this through other software
determines the molecules to have diameters d = 102 4+ 1.6nm, which is also within two standard

deviations of the accepted value.

INTRODUCTION & THEORY

Photon correlation spectroscopy (PCS) is a technique
that utilizes the principles of Rayleigh scattering [1] to
determine information about the particles within a scat-
tering volume. Light waves strike molecules and as a
result, electric field of the light induces an oscillating po-
larization of the electrons in the molecules [1]. The force
of these induced polarizations accelerates the electrons,
which re-radiate the light. Because of their motion, the
measured intensity of scattered light from the particles
will fluctuate in time. Information about the shape, size,
motion and rates of reactions [1] can be determined.

The purpose of this experiment was to confirm the di-
ameter of standard d = 96 + 3.1nm spherical polystyrene
molecules in a water suspension. We assumed that the
suspension was dilute, that the molecules were exhibiting
Brownian motion, and that the particles were uniformly
dispersed in the solution and that they did not interact
with each other.

An incident monochromatic electromagnetic beam can
induce a dipole moment /i in a single molecule which has
an anisotropic polarizability described by the polarizabil-
ity tensor &. The dipole moment varies in time like [1]

jitt) = & - B(t). 1)
This time-variant dipole moment will emit electromag-
netic radiation that can be measured experimentally.
The light beam has an electric field that can be described
by the general form

By(7,t) = 7y Eo exp [z (/Z . We)} : (2)

where TA_L'Z is a unit vector in the direction of the electric
field, Ey is the magnitude of the electric field, ]21 is the
propagation vector and w; is the angular frequency. This
wave is assumed to be planar by the time it reaches the
scattering medium, and impinges upon a medium with a
local dielectric constant

&(r,t) = eol + 6&(F, 1), (3)
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FIG. 1: The basic scattering geometry, where light has travels
toward the material with propagation vector k;, and scatters
off with propagation vector k.

where §&(r,t) is the dielectric constant fluctuation ten-
sor at a point 7 and time ¢, and I is the second-rank unit
tensor [1]. The scattering vector ¢ is the difference be-
tween the vectors EZ and Ef as shown in Fig. 1, whose
magnitudes are 27n/\; and 2wn/Ay, respectively. It is
usually the case that [1]

kil = |k, (4)
which allows us to find an expression for the magnitude
of ¢
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q = 2k; sin SRy sin 5. (5)

This is the Bragg condition [1] which “specifies the wave
vector component of the dielectric constant fluctuation
that will give rise to scattering at an angle 6”.

Two of the primary methods used in light scatter-
ing techniques are the homodyne and heterodyne meth-
ods. The homodyne method directly detects scattered
light in a photomultiplier tube, then sends the infor-
mation through an autocorrelator or spectrum analyzer.
The heterodyne method detects un-scattered light and
scattered light simultaneously in a photomultiplier, then
sends the information to an autocorrelator or spectrum
analyzer. The quantities measured in these scattering
techniques are the time-correlation functions of either



the scattered electric field or intensity. The intensity I
is defined to be the square of the electric field such that
Iy = |EZ|. For heterodyne and homodyne detection, we
define the spectral intensity self-correlation functions to
be, respectively:

Li(r) = (Eg)Es(t+7)) (6)
I(r) = (|EL0)PBs(t+ 7)), (7)
where EZ¥(t) is the complex conjugate of E;(t) and the
correlation function looks at the electric field at time ¢

and a later time t + 7. The two intensity correlation
functions are related by

I(r) = L) + [t + 7). (8)

Brownian motion

If a molecule was observed for a time 7, the path would
be seemingly random because of collisions. Over time,
the total displacement would be AE(T). Assuming this
displacement distribution can be modeled as a random
walk, the probability that a particle would be displaced
within the scattering volume d®R is the Gaussian distri-
bution function [1]
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where (AR?(7)) is the mean-square displacement of the
particle in time 7. It is convenient to create an intermedi-
ate scattering function that is dependent upon the scat-
tering vector ¢, so the spatial Fourier transform is per-
formed on the Gaussian distribution function and gives

1]
Fy(q.7) = exp [~¢*(AR*(7)) /6] . (10)
For a diffusing particle [1], (AR2(7)) = 6D, where D

is the self-diffusion coefficient whose value, according to
the Einstein relation, is

p= kel
6mna

(11)

By multiplying Eq. 10 by the number of particles in-
side the scattering volume, the number-density self-
correlation function for heterodyne scattering if found
to be

Fi(q,7) = (N)exp [—qQDT] ) (12)

The self-correlation function for heterodyne scattering Fi
is proportional to the spectral density correlation func-
tion I; by the relation

I(r) = (- i) o0® Fa (4, 7), (13)

where « is the magnitude of the molecular polarizability
tensor & along ii; and iiy.

Spectral and numerical density functions

From Eqgs. 13 and 8, we can state that the homodyne
spectral density correlation I is proportional to

Iy(7t) = (N)? + <N>2 exp —2D¢>T, (14)
where

a 3\n 2’
where n is the refractive index of the scattering particles.
The radius of the particles a can be calculated from the
slope of a linear plot between Dg? and sin? 0/2.

EXPERIMENT

A suspension of polystyrene was created for this ex-
periment. One drop of concentrated polystyrene spheres
in water was dropped into a vial containing about 20mL
of distilled water inside a glass vial (index of refraction
n = 1.5), which was placed into the goniometer, where
it was in contact with an index-matched decahydron-
apthalene solution. This was temperature controlled by
a circulating water bath using the Brinkman RM6 wa-
ter heater, set to 25°C. The decahydronapthalene was
not sealed in a container, so it was necessary to filter it
through a Brookhaven Instruments filtering unit. The
filtering process eliminated any large dust particles that
could have affected the scattered light measurement.

A Brookhaven Instruments 900AT digital correlator
fed information directly into a computer, a process which
was controlled by Brookhaven Instruments’ Dynamic
Light Scattering Software. The software automatically
determined the size of the polystyrene particles based
upon a few experimental parameters: the viscosity of the
solvent n = 1.002 cP, the refractive index of the parti-
cles n = 1.59, and the wavelength of light A = 632.8 nm.
The values 7 and I; were saved for some of the experi-
ments, and were imported into Igor Pro. The correlation
function I; was plotted as a function of the time displace-
ment 7 in a log-log plot, and an exponential function of
the form

A+ Bexp[—2Dg?7] (16)

was fit to the data. Each set of data represents a two
minute sampling time where the digital correlator would
measure the light intensity every 5 usec. Four data runs
were taken, with the scattering angle ranging from 50 to
110 degrees in 20 degree intervals.
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FIG. 2: A log-log plot of the correlation function taken from
an experiment with temperature 7" = 293K and scattering
angle 90°. This data is well fit by a decaying exponential
function, whose values are shown in the legend.

RESULTS AND ANALYSIS

The data was fit to Eq. 16, and the calculated values
for Dg? were set equal to the expanded form

167kpTn? 0
Dq* = W sin? B (17)
and solved for r, the radius of the spherical molecules.
Figure 2 shows data taken from a two minute sampling
time, where T' = 273K and 6 = 90°.
The value of Dg? for this sample is (1456.9 & 3.0) x
10~%(time)~!. Tt is necessary that the value be in terms
of seconds. A simple change in units shows

¢ time o 10° psec

= 1457 sec™ L.
(18)

Dq? = 1456.9 x 10~

1 psec sec

The radius for each molecule is then

167 kBT’I‘L2 . 92 0
= — "~ _sin?~ 1
r 677)\2( q2> sin 5 (19)

51nm. (20)

The calculated diameter of the polystyrene spheres is d =
102 4+ 1.6nm. This is within two standard deviations of
the standard value of the diameter, d = 96 £+ 3.1lnm.
The Brookhaven software calculated the diameter of the
polystyrene spheres to be d = 108.6+4.5nm, which is also
within two standard deviations of the supplier’s standard
value d = 96 £ 3.1nm.

DISCUSSION AND CONCLUSION

This experiment successfully validated the theoreti-
cal predictions for finding the diameter of spherical par-
ticles with the photon correlation spectroscopy tech-
nique. The calculated value for the diameter of stan-
dard d = 96 £+ 3.1nm spheres was d = 102 £ 1.6nm,
which is within two standard deviations of the accepted
value. The Brookhaven software determined the size of
the molecules to be d = 108.6 + 4.5nm, which is within
two standard deviations of the accepted value.
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