Hearing the shape of a rod by the sound of its collision
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We collide rods of different lengths and infer the vibrational motion of the longer rod by a spectral
analysis of the resulting sound. Collisions of rods of square and circular cross sections are audibly
different. While longitudinal modes of vibration do not discriminate between different
cross-sectional shapes, flexural modes do, and these enable us to hear the shapes of the rods. We use
a microphone, an amplifier, and a spectrum analyzer to observe the longitudinal and flexural modes

of the ringing rod. With an accessible mathematical model and a simple apparatus, we obtain good
agreement between theory and experiment.1988 American Association of Physics Teachers.

[. INTRODUCTION moving shorter rod collides with a stationary longer rod.
- . e Waves of expansion and compression bounce back and forth
The study of colliding rods has a long and rich histdT.  peqween the free ends of the rods at the speed of sound. At
Recently, Auerbachnoted that colliding steel balls thud, first ‘these waves pass through the collision interface because
while colliding steel rods ring. The collision of steel rods j; s compressed. However, when the waves become confined
initiates vibrations in the steel that c_ouple to the air to genyg the longer rod, the uncompressed interface reflects them,
erate sound waves. We wondered if one could analyze thgynning the waves in the longer rod. The vibrating longer
vibrations by merely listening to the sound of the collision. o hylis away from the now quiescent shorter rod. It is these
In fact, in the aftermath of a collision, these vibrations can bgiy ations. the ringing of the longer rod, that generate the
deduced from a spectral analysis of the ringing of one of thg,; nq we’ hear. '
rods. This experiment uses simple equipment found in Most \gte that the longer rod does not recoil with a single ve-
undergraduate laboratories. Most interestingly, the sound q city. Only its center of mass moves uniformly, its velocity
the collision reveals the shape of the cross section of thgsg jting from the conservation of momentum. In this inelas-

ringing rod. tic collision, a fraction of the original kinetic energy is trans-
formed into elastic energy, and ultimately dissipated as heat
II. THEORY and sound.

A. Vibrations confined to the longer rod

. . . ) B. Longitudinal wave equation
Auerbachi described how vibrations are confined to the g q

longer of the two colliding rods. Figure 1 illustrates the Upon colliding, longitudinal waves of compression and
mechanism of this confinement for longitudinal vibrations. Atension propagate in the longer rod. There are several differ-
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Fig. 1. Sequence from a computer simulation of the longitudinal vibration — E/A ; _ ; ; ;
resulting from the collision of a longer and a shorter rod. The longer rod ithere CL E/p. This second-order partial differential

initially at rest and the shorter rod is initially moving left to right. The equation is the classical wave equation.
collision brings the shorter rod to a complete stop. The longer rod recoils as
a longitudinal wave reflects back and forth across its length. Vertical hatchC, Longitudinal modes
ing denotes compression and horizontal hatching denotes tension.
We seek normal modes of longitudinal vibration by as-

suming

ent ways to analyze such waves. We will apply Newton’s _ ;
secondylaw of m)étion and Hooke’s law of eFI);syc/icity to an 0= (a coskx+ g sinkx)cogwt+ ¢), ©®
infinitesimal element of the rotiwe will assume that the rod where the two constantsand 3 are determined by boundary
is long and thin. conditions. By direct substitution, we find that this is a solu-

Consider Fig. 2. An element of the rod lying between tion of Eq.(5) providedw=kc, . The direct proportionality
andx+dx is stretched so that its left edge displaces a disbetween the temporal and spatial frequencies indicates that
tance¢ and its right edge displaces a distarcedé. The the longitudinal waves are dlspers_|onless. The group speed
strainis the relative change in lengtté/ox, and thestresss ~ @nd phase speed of the longitudinal waves are hatk

the force per unit cross-sectional arE&A. According to  ~—CL- _
Hooke's law, stress is proportional to strain, so In our experiment, after the rods separate, the ends of the

rods are free. Hence, the stress must vanish at each end, 0
=F=—AEdé/ox, and the boundary conditions on the nor-

mal modes ak=0 andx=L are
x x+dx

5¢ =0 7
a) X (7)
The first of these requireea= 3. The second then requires
£ Erde sinkL=0. Thus the spatial frequencies of the normal modes
satisfy k,L=ns and the temporal frequencies arerf,
=w,=k,c_ or
CL
fn_ n Z! (8)
wheren=1,23,... .
F(x)
b) > D. Flexural wave equation

When a rod collides or is struck at one end, it is prone to
Fig. 2. Longitudinal stress and straife) the strain in an infinitesimal Y'brate transyersely as well a_s longltUdma”y; in ,faCt’ the

stretched element of the rod, afio) the stress. The force- F(x+dx) on internal COUD“”Q bet\!V?en Strams'makes propagatlon of just
the right side of the element is the reaction to the forde(x+dx) on the ~ ONe type of motion difficult to achl_eve._ Even a slight eccen-

rest of the rod to the right. tricity in the collision results in significant flexural vibra-
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defines the radius of gyratidRg of the cross section. For a
circular rod of diameteD, Rg=D/4. For a square rod of
sideD, Rg=D/+/12.

If the angles of the rod are small, so tha/dx<1, we
may approximatéthe curvature of the bend as

1 (927] 13
R™ o 13
so that the expression for torque becomes
(927;
r=—EARS -2 (14)

Because the bending moment or torgt{e) varies along
the rod, the shearing forceé,(x) must also vary so as to
Fig. 3. Flexural stress and straifg) the strain in an infinitesimal bent prevent the bent rod from rotating_ By computing the torques

element of the rod, antb) the stress. The force- F,(x+dx) and torque about the left end of the element, we require the balance
—7(x+dx) on the right side of the element is the reaction to the force

+Fy(x+dx) and torque+ 7(x+dx) on the rest of the rod to the right. Fy(x+dx)dx=7(x) — 7(x+dX) (15
or

ar &
tions. Moreover, flexural vibrations couple more efficienty ~ Fy=— &=EA|% w3 (16)
to sound waves than longitudinal vibratiofiecause during
flexural vibrations a larger surface area of the rod movedhe net transverse force on the element is
perpendicular to itself Although there are several different I
ways to analyze such flexural wavesye will again apply dF,=Fy(x)—Fy(x+dx)=— —Ydx. (17
Newton’s second law of motion and Hooke’s law of elastic- Ix
ity to an infinitesimal element of the rod. We will assume according to Newton's second law,
that the rod is long and thiso that the flexural wavelengths

. 2
are small compared to the rod’s diamét@nd that the angles °n

and displacements of the bends are small. dFy=dm ate’ (18
Consider Fig. 3. The outer part of the bent rod is stretched -
while the inner part is compressed. Assume that the poin?r’ by combining Eq(16), Eq. (17), and Eq.(18),
(x,y) displaces througli& 7). The longitudinal strain in an ity 7
infinitesimal element a distangefrom the neutral center line —AERg ot dx= pAdXW* (19)
i he longitudinal ' A A i . .
E) ?—Igégﬁé’zqgvf/ e longitudinal stress &, /d ceording wherep is the mass density of the rod, and hence
dF o¢ i L " (20
x__g % ax* T T REE a2
dA E X’ 9) cCL

wherec, =+E/p. This is a fourth-order partial differential
where the proportionality constaftis again Young's elastic equation.

modulus.dF, is negative for outer filaments under tension
and positive for inner filaments under compression. The
strain can be expressed in terms of the radius of curvaure E- Flexural modes

of the bend, We seek normal modes of flexural vibration by assuming
23 (R-I—y)d(p—Rd(p_ y 10 7(x,t) =(a coshkx+ B sinh kx+ y coskx
28 Rde R’ +6 sinkx)cog wt + @), (21)

Although the total longitudinal force integrated across thewhere the four constants, B, y, and é are determined by
cross section vanishétension above canceling compressionboundary conditions. By direct substitution, we find that this
below), there is a nonvanishing moment of force or torqueis a solution of Eq(20) providedw =k?c, Rg . The quadratic
about the neutral axis;= fd7= [ydF,. Invoking both Eq. relation between the temporal and spatial frequencies indi-
(9) and Eq.(10), we may write cates that the flexural waves are dispersive.
In our experiment, the ends of the rods are free. Hence, the
EAR; torque and the shear must vanish at each end,70

7R (11 =—-AER #7n/ox? and 0=F,=EAR;#*p/ox®, and the
boundary conditions on the normal modesxat0 and x
where =L are
1 #n
2 _— 2 PR A — =
RG—A fy dA (12 g 0, gV 0. (22
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These conditions require first that=y and 8= §, and then
that

a(coshkL—coskL)=B(sinkL—sinhkL),
a(sinhkL+sinkL)= B(coskL—coshkL).

(23

Taking the quotient of these two equations and employing

several trigonometric and hyperbolic identities, we find that

I_(kL ’_(kL)
ta =*tan .

2 2 (24)

amplifier

v

—>

shorter rod longer rod

FFT Spectrum Analyzer

We may solve this transcendental equation by plotting thé&ig. 4. Experimental apparatus. Fishing line suspends the longer rod hori-

left side versus the right side and recording the points o
intersection. To a good approximation, we find

o
knL~t§(2n+1). (25
The temporal frequencies must therefore satisfyf &= w,
=k?c_ Rg or
’7TC|_RG

fo=(2n+1)2 82

: (26)
wheren=1,2,3,... .

Note that the flexural frequencies, given by E26), de-
pend on the radius of gyratioRg (and hence the shapef
the cross section, while the longitudinal frequencies, give
by Eg. (8), are independent of the cross section.

F. Corrections for thick rods

Our analysis is correct only for thin rods, or “Euler—

T7.0nta||y. A microphone, an amplifier, and a spectrum analyzer record the

sound of a longer rod after being struck horizontally by a shorter rod.

The rods we collided were machined from a single piece
of cold-rolled stainless steel. We used two sets of longer
(19.0 cm and shortef4.41 cmj rods to gather data; one set
with square cross sections, the other with circular cross sec-
tions, and both of the same thickngds91 cm). Our appa-
ratus is depicted in Fig. 4. The longer rod was suspended
from a horizontal beam with fishing line, looping the fishing
line around the ends of the rod, and then clamping the line to
the beam above so that the long rod was suspended horizon-
tally. Since we were interested in the frequencies present and
not in the relative amplitudes, the support points were not

Naried. We clamped a microphone to a stand next to the end

of the longer rod; however, our results were indifferent to
either the placement of the microphone or acoustic reflec-
tions. We employed an inexpensive microphone to listen to
the sound of the collision and a car audio amplifiRadio
Shack Optimus 100Yvto amplify the signal before sending

Bernoulli beams.” For thick rods, or “Timoshenko beams,” it to a FFT (fast Fourier transforin Spectrum Analyzer
effects such as rotary inertia and shear deformation must b&tanford Research System’s SRY6&Ghere the data were

considered. Both these effects will lower the frequencies o
the flexural modes, especially the higher ohes.

fecorded to disk and transferred to a computer for plotting
and analysis.

Heuristically, the square of a vibrational frequency is the Although we experimented with more elaborate tech-

restoring force per unit displacement per unit inettisvhen

niques, we found it sufficient to collide the rods manually.

a thick rod bends, its differential elements rotate throughwe held the shorter rod in one hand, sharply knocked it
small angles. The corresponding rotational inertia depressegjainst one end of the longer rod, and immediately retracted
the vibrational frequencies. Also, as a thick rod bends, sheat. Such collisions easily generated reproducible sounds.
forces tend to deform it, skewing rectangular elements intayhile the longer rod rang for at least 1 min before the sound
parallelograms. The resulting mushy response reduces thegenerated decayed, we collected data &dos after the
restoring force and further depresses the vibrational frequereollision, while the principal acoustical peaks were still

cies. strong. While the relative intensities of the peaks might vary
between trials, the locations of the peaks were very stable.
Il EXPERIMENT The lowest frequencies were the most persistent and domi-

nated the sound production after a few seconds.

A. Apparatus and procedure )
N o B. Results and analysis
Initially, we set out to observe the collision between a

shorter and a longer rod both visually and audibly. Without a Typical audio frequency spectra for collisions between
high speed video camera, recording a collision and obtainingeds of square and circular cross section are shown in Fig. 5.
meaningful quantitative data is difficult. Howevdistening ~ The spectra are dominated by a small number of large peaks
to the collision provided a rich sound which allowed evencorresponding to the frequencies of the standing waves de-
untrained ears to distinguish between square and circulat€loped in Sec. Il. The collision excites these standing waves
cross-section rods. The nonharmonic frequencies present Which produce an audible sound corresponding to the first
the ringing of the longer rodthe shorter rod does not pro- three flexural modes and the first longitudinal mode. Table |
duce sound in the audible rangeere found to be quite compares the locations of the experimental peaks to the low-
consistent with the flexural modes described above and tgst theoretical modal frequencies, using the speed of sound
also include the longitudinal mode, which is responsible forin steet* asc, =5100 m/s. In agreement with the theory, the
the short rod transferring all of its momentum to the long rodlongitudinal peaks occur at the same frequency for both
as described by Auerbathnd demonstrated in our simula- square and circular rods, but the flexural peaks of the square
tion (Fig. 1). rods are shifted abouf4/3~1.15 times higher than the flex-
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Fig. 5. Acoustical spectra of the sounds of the collisions of longer and shorter rods of dajeakeand circularwhite) cross sections. The shapes of the rods
separate the first three flexural peaks, but the longitudinal peaks coincide. For theoretical values, consult Table I.

ural peaks for the circular rods. This factor is the ratio of thewith values consistent with those reported here. Thus quan-
radii of gyration of the square and circular rods, according tditative measurements can be made relatively easily and
Eq. (26). Roughly speaking, the square cross section placesompared to theory. Hearing rods ring gives great insight
more steel farther from the neutral axis, compared to thénto the audible frequencies of many common devices from
circular cross sections, thereby increasing both the flexurathimes to xylophones.
restoring force and the flexural frequencies. However, con-
trary to the theory, the higher flexural frequencies are abouf, concLUSION
10% lower than predicted. This is because our longer rods,
with a length to thickness ratio of only about 6.4, were not By a spectral analysis of the ringing sound following the
very thin, and hence only approximated the Euler—Bernoullicollision of steel rods, we can infer the vibrational motion of
beams in the simple theory presented above. the rods. Rods of square and circular cross section generate

The distinct shift in frequency between square and circulasound that is different to the ear. With a microphone, an
cross-section rods is distinctly audible, measurable, and coramplifier, and a spectrum analyzer, one can experimentally
sistent with a simple theory accessible to undergraduatesuantify this difference, and understand it theoretically, by
The quantitative measurement of the shift described abovihe elementary analysis presented here. Our experimental
uses a commercial FFT spectrum analyzer, but the first flexesonant frequencies were in good agreement with our
ural frequency can easily be measured using data acquisitidheory, and we anticipate even better agreement with thin
systems and software in common use in general physics labsds. It is quite easy to hear the shape of a rod.
Using Pasco Scientific's interface hardwd€ 6560 along
with Pasco’s Science Workshop software, a FFT of the ama ckNOWLEDGMENTS
plified audio gives sharp peaks for the first flexural mode
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