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We collide rods of different lengths and infer the vibrational motion of the longer rod by a spectral
analysis of the resulting sound. Collisions of rods of square and circular cross sections are audibly
different. While longitudinal modes of vibration do not discriminate between different
cross-sectional shapes, flexural modes do, and these enable us to hear the shapes of the rods. We use
a microphone, an amplifier, and a spectrum analyzer to observe the longitudinal and flexural modes
of the ringing rod. With an accessible mathematical model and a simple apparatus, we obtain good
agreement between theory and experiment. ©1998 American Association of Physics Teachers.
,
s

en
t
n
b
th
o

d
th

he
e
A

d.
forth
. At
use
ned
em,
er
se

the

e-
ty
s-

s-
eat

d
fer-
I. INTRODUCTION

The study of colliding rods has a long and rich history.1–4

Recently, Auerbach5 noted that colliding steel balls thud
while colliding steel rods ring. The collision of steel rod
initiates vibrations in the steel that couple to the air to g
erate sound waves. We wondered if one could analyze
vibrations by merely listening to the sound of the collisio
In fact, in the aftermath of a collision, these vibrations can
deduced from a spectral analysis of the ringing of one of
rods. This experiment uses simple equipment found in m
undergraduate laboratories. Most interestingly, the soun
the collision reveals the shape of the cross section of
ringing rod.

II. THEORY

A. Vibrations confined to the longer rod

Auerbach5 described how vibrations are confined to t
longer of the two colliding rods. Figure 1 illustrates th
mechanism of this confinement for longitudinal vibrations.
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moving shorter rod collides with a stationary longer ro
Waves of expansion and compression bounce back and
between the free ends of the rods at the speed of sound
first, these waves pass through the collision interface beca
it is compressed. However, when the waves become confi
to the longer rod, the uncompressed interface reflects th
trapping the waves in the longer rod. The vibrating long
rod pulls away from the now quiescent shorter rod. It is the
vibrations, the ringing of the longer rod, that generate
sound we hear.

Note that the longer rod does not recoil with a single v
locity. Only its center of mass moves uniformly, its veloci
resulting from the conservation of momentum. In this inela
tic collision, a fraction of the original kinetic energy is tran
formed into elastic energy, and ultimately dissipated as h
and sound.

B. Longitudinal wave equation

Upon colliding, longitudinal waves of compression an
tension propagate in the longer rod. There are several dif
692© 1998 American Association of Physics Teachers
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ent ways to analyze such waves. We will apply Newto
second law of motion and Hooke’s law of elasticity to
infinitesimal element of the rod.6 We will assume that the rod
is long and thin.

Consider Fig. 2. An element of the rod lying betweenx
and x1dx is stretched so that its left edge displaces a d
tancej and its right edge displaces a distancej1dj. The
strain is the relative change in length]j/]x, and thestressis
the force per unit cross-sectional areaF/A. According to
Hooke’s law, stress is proportional to strain, so

Fig. 1. Sequence from a computer simulation of the longitudinal vibrati
resulting from the collision of a longer and a shorter rod. The longer ro
initially at rest and the shorter rod is initially moving left to right. Th
collision brings the shorter rod to a complete stop. The longer rod recoi
a longitudinal wave reflects back and forth across its length. Vertical ha
ing denotes compression and horizontal hatching denotes tension.

Fig. 2. Longitudinal stress and strain:~a! the strain in an infinitesimal
stretched element of the rod, and~b! the stress. The force2F(x1dx) on
the right side of the element is the reaction to the force1F(x1dx) on the
rest of the rod to the right.
693 Am. J. Phys., Vol. 66, No. 8, August 1998
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]j

]x
, ~1!

where the proportionality constantE is Young’s elastic
modulus, and the negative sign ensures that, during comp
sion, positive stress results in negative strain. The net fo
on the element is

dF5F~x!2F~x1dx!52
]F

]x
dx. ~2!

According to Newton’s second law, force equals mass tim
acceleration,

dF5dm
]2j

]t2 , ~3!

or, by combining Eq.~1! and Eq.~2!,

AE
]2j

]x2 dx5rAdx
]2j

]t2 , ~4!

wherer is the mass density of the rod, and hence

]2j

]x2 5
1

cL
2

]2j

]t2 , ~5!

where cL5AE/r. This second-order partial differentia
equation is the classical wave equation.

C. Longitudinal modes

We seek normal modes of longitudinal vibration by a
suming

j~x,t !5~a coskx1b sinkx!cos~vt1w!, ~6!

where the two constantsa andb are determined by boundar
conditions. By direct substitution, we find that this is a so
tion of Eq. ~5! providedv5kcL . The direct proportionality
between the temporal and spatial frequencies indicates
the longitudinal waves are dispersionless. The group sp
and phase speed of the longitudinal waves are bothv/k
5cL .

In our experiment, after the rods separate, the ends of
rods are free. Hence, the stress must vanish at each en
5F52AE]j/]x, and the boundary conditions on the no
mal modes atx50 andx5L are

]j

]x
50. ~7!

The first of these requiresa5b. The second then require
sinkL50. Thus the spatial frequencies of the normal mod
satisfy knL5np and the temporal frequencies are 2p f n

5vn5kncL or

f n5n
cL

2L
, ~8!

wheren51,2,3,... .

D. Flexural wave equation

When a rod collides or is struck at one end, it is prone
vibrate transversely as well as longitudinally; in fact, t
internal coupling between strains makes propagation of
one type of motion difficult to achieve. Even a slight ecce
tricity in the collision results in significant flexural vibra
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tions. Moreover, flexural vibrations couple more efficien
to sound waves than longitudinal vibrations~because during
flexural vibrations a larger surface area of the rod mo
perpendicular to itself!. Although there are several differen
ways to analyze such flexural waves,7 we will again apply
Newton’s second law of motion and Hooke’s law of elast
ity to an infinitesimal element of the rod. We will assum
that the rod is long and thin~so that the flexural wavelength
are small compared to the rod’s diameter! and that the angles
and displacements of the bends are small.

Consider Fig. 3. The outer part of the bent rod is stretc
while the inner part is compressed. Assume that the p
(x,y) displaces through~j,h!. The longitudinal strain in an
infinitesimal element a distancey from the neutral center line
is ]j/]x, and the longitudinal stress isdFx /dA. According
to Hooke’s law,

dFx

dA
52E

]j

]x
, ~9!

where the proportionality constantE is again Young’s elastic
modulus.dFx is negative for outer filaments under tensi
and positive for inner filaments under compression. T
strain can be expressed in terms of the radius of curvatuR
of the bend,

]j

]x
5

~R1y!dw2Rdw

Rdw
5

y

R
. ~10!

Although the total longitudinal force integrated across
cross section vanishes~tension above canceling compressi
below!, there is a nonvanishing moment of force or torq
about the neutral axis,t5*dt5*ydFx . Invoking both Eq.
~9! and Eq.~10!, we may write

t52
EARG

2

R
, ~11!

where

RG
2 5

1

A E y2dA ~12!

Fig. 3. Flexural stress and strain:~a! the strain in an infinitesimal ben
element of the rod, and~b! the stress. The force2Fy(x1dx) and torque
2t(x1dx) on the right side of the element is the reaction to the fo
1Fy(x1dx) and torque1t(x1dx) on the rest of the rod to the right.
694 Am. J. Phys., Vol. 66, No. 8, August 1998
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defines the radius of gyrationRG of the cross section. For a
circular rod of diameterD, RG5D/4. For a square rod o
sideD, RG5D/A12.

If the angles of the rod are small, so that]h/]x!1, we
may approximate8 the curvature of the bend as

1

R
'

]2h

]x2 , ~13!

so that the expression for torque becomes

t52EARG
2 ]2h

]x2 . ~14!

Because the bending moment or torquet(x) varies along
the rod, the shearing forceFy(x) must also vary so as to
prevent the bent rod from rotating. By computing the torqu
about the left end of the element, we require the balance

Fy~x1dx!dx5t~x!2t~x1dx! ~15!

or

Fy52
]t

]x
5EARG

2 ]3h

]x3 . ~16!

The net transverse force on the element is

dFy5Fy~x!2Fy~x1dx!52
]Fy

]x
dx. ~17!

According to Newton’s second law,

dFy5dm
]2h

]t2 , ~18!

or, by combining Eq.~16!, Eq. ~17!, and Eq.~18!,

2AERG
2 ]4h

]x4 dx5rAdx
]2h

]t2 , ~19!

wherer is the mass density of the rod, and hence

]4h

]x4 52
1

RG
2 cL

2

]2h

]t2 , ~20!

wherecL5AE/r. This is a fourth-order partial differentia
equation.

E. Flexural modes

We seek normal modes of flexural vibration by assum

h~x,t !5~a coshkx1b sinh kx1g coskx

1d sin kx!cos~vt1w!, ~21!

where the four constantsa, b, g, and d are determined by
boundary conditions. By direct substitution, we find that th
is a solution of Eq.~20! providedv5k2cLRG . The quadratic
relation between the temporal and spatial frequencies i
cates that the flexural waves are dispersive.

In our experiment, the ends of the rods are free. Hence,
torque and the shear must vanish at each end, 05t
52AERG

2 ]2h/]x2 and 05Fy5EARG
2 ]3h/]x3, and the

boundary conditions on the normal modes atx50 and x
5L are

]2h

]x2 50,
]3h

]x3 50. ~22!
694Mascarenhaset al.
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These conditions require first thata5g andb5d, and then
that

a~coshkL2coskL!5b~sin kL2sinh kL!,
~23!

a~sinh kL1sin kL!5b~coskL2coshkL!.

Taking the quotient of these two equations and employ
several trigonometric and hyperbolic identities, we find th

tanS kL

2 D56tanhS kL

2 D . ~24!

We may solve this transcendental equation by plotting
left side versus the right side and recording the points
intersection. To a good approximation, we find

knL'6
p

2
~2n11!. ~25!

The temporal frequencies must therefore satisfy 2p f n5vn

5k2cLRG or

f n'~2n11!2
pcLRG

8L2 , ~26!

wheren51,2,3,... .
Note that the flexural frequencies, given by Eq.~26!, de-

pend on the radius of gyrationRG ~and hence the shape! of
the cross section, while the longitudinal frequencies, giv
by Eq. ~8!, are independent of the cross section.

F. Corrections for thick rods

Our analysis is correct only for thin rods, or ‘‘Euler
Bernoulli beams.’’ For thick rods, or ‘‘Timoshenko beams
effects such as rotary inertia and shear deformation mus
considered. Both these effects will lower the frequencies
the flexural modes, especially the higher ones.9

Heuristically, the square of a vibrational frequency is t
restoring force per unit displacement per unit inertia.10 When
a thick rod bends, its differential elements rotate throu
small angles. The corresponding rotational inertia depre
the vibrational frequencies. Also, as a thick rod bends, sh
forces tend to deform it, skewing rectangular elements i
parallelograms. The resulting mushy response reduces
restoring force and further depresses the vibrational frequ
cies.

III. EXPERIMENT

A. Apparatus and procedure

Initially, we set out to observe the collision between
shorter and a longer rod both visually and audibly. Withou
high speed video camera, recording a collision and obtain
meaningful quantitative data is difficult. However,listening
to the collision provided a rich sound which allowed ev
untrained ears to distinguish between square and circ
cross-section rods. The nonharmonic frequencies prese
the ringing of the longer rod~the shorter rod does not pro
duce sound in the audible range! were found to be quite
consistent with the flexural modes described above an
also include the longitudinal mode, which is responsible
the short rod transferring all of its momentum to the long r
as described by Auerbach5 and demonstrated in our simula
tion ~Fig. 1!.
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The rods we collided were machined from a single pie
of cold-rolled stainless steel. We used two sets of lon
~19.0 cm! and shorter~4.41 cm! rods to gather data; one se
with square cross sections, the other with circular cross s
tions, and both of the same thickness~1.91 cm!. Our appa-
ratus is depicted in Fig. 4. The longer rod was suspen
from a horizontal beam with fishing line, looping the fishin
line around the ends of the rod, and then clamping the line
the beam above so that the long rod was suspended hor
tally. Since we were interested in the frequencies present
not in the relative amplitudes, the support points were
varied. We clamped a microphone to a stand next to the
of the longer rod; however, our results were indifferent
either the placement of the microphone or acoustic refl
tions. We employed an inexpensive microphone to listen
the sound of the collision and a car audio amplifier~Radio
Shack Optimus 100W! to amplify the signal before sendin
it to a FFT ~fast Fourier transform! Spectrum Analyzer
~Stanford Research System’s SR760! where the data were
recorded to disk and transferred to a computer for plott
and analysis.

Although we experimented with more elaborate tec
niques, we found it sufficient to collide the rods manual
We held the shorter rod in one hand, sharply knocked
against one end of the longer rod, and immediately retrac
it. Such collisions easily generated reproducible soun
While the longer rod rang for at least 1 min before the sou
it generated decayed, we collected data about 1 s after the
collision, while the principal acoustical peaks were s
strong. While the relative intensities of the peaks might va
between trials, the locations of the peaks were very sta
The lowest frequencies were the most persistent and do
nated the sound production after a few seconds.

B. Results and analysis

Typical audio frequency spectra for collisions betwe
rods of square and circular cross section are shown in Fig
The spectra are dominated by a small number of large pe
corresponding to the frequencies of the standing waves
veloped in Sec. II. The collision excites these standing wa
which produce an audible sound corresponding to the
three flexural modes and the first longitudinal mode. Tab
compares the locations of the experimental peaks to the l
est theoretical modal frequencies, using the speed of so
in steel11 ascL55100 m/s. In agreement with the theory, th
longitudinal peaks occur at the same frequency for b
square and circular rods, but the flexural peaks of the squ
rods are shifted aboutA4/3'1.15 times higher than the flex

Fig. 4. Experimental apparatus. Fishing line suspends the longer rod
zontally. A microphone, an amplifier, and a spectrum analyzer record
sound of a longer rod after being struck horizontally by a shorter rod.
695Mascarenhaset al.



ds
Fig. 5. Acoustical spectra of the sounds of the collisions of longer and shorter rods of square~black! and circular~white! cross sections. The shapes of the ro
separate the first three flexural peaks, but the longitudinal peaks coincide. For theoretical values, consult Table I.
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ural peaks for the circular rods. This factor is the ratio of t
radii of gyration of the square and circular rods, according
Eq. ~26!. Roughly speaking, the square cross section pla
more steel farther from the neutral axis, compared to
circular cross sections, thereby increasing both the flex
restoring force and the flexural frequencies. However, c
trary to the theory, the higher flexural frequencies are ab
10% lower than predicted. This is because our longer ro
with a length to thickness ratio of only about 6.4, were n
very thin, and hence only approximated the Euler–Berno
beams in the simple theory presented above.

The distinct shift in frequency between square and circu
cross-section rods is distinctly audible, measurable, and
sistent with a simple theory accessible to undergradua
The quantitative measurement of the shift described ab
uses a commercial FFT spectrum analyzer, but the first fl
ural frequency can easily be measured using data acquis
systems and software in common use in general physics
Using Pasco Scientific’s interface hardware~CI 6560! along
with Pasco’s Science Workshop software, a FFT of the a
plified audio gives sharp peaks for the first flexural mo

Table I. Theoretical and experimental frequencies of vibration, for rods
square and circular cross section, assuming the speed of sound in stecL

55100 m/s.

Longitudinal
f 1 ~kHz!

Flexural

f 1 ~kHz! f 2 ~kHz! f 3 ~kHz!

Square
theory 13.5 2.78 7.73 15.1
experiment
(60.25 kHz)

13.6 2.63 7.00 12.9

Circular
theory 13.5 2.41 6.69 13.1
experiment
(60.25 kHz)

13.5 2.38 6.25 11.5
696 Am. J. Phys., Vol. 66, No. 8, August 1998
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with values consistent with those reported here. Thus qu
titative measurements can be made relatively easily
compared to theory. Hearing rods ring gives great insi
into the audible frequencies of many common devices fr
chimes to xylophones.

IV. CONCLUSION

By a spectral analysis of the ringing sound following t
collision of steel rods, we can infer the vibrational motion
the rods. Rods of square and circular cross section gene
sound that is different to the ear. With a microphone,
amplifier, and a spectrum analyzer, one can experiment
quantify this difference, and understand it theoretically,
the elementary analysis presented here. Our experime
resonant frequencies were in good agreement with
theory, and we anticipate even better agreement with
rods. It is quite easy to hear the shape of a rod.
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